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Spatial concepts and notions

Introduction

The processes in natural systems and the patterns that

result from them occur in ecological space and time.

To study natural systems and to understand the func-

tional processes that are related to them, we need to

identify the relevant spatial and temporal scales at

which these occur. While the spatial and temporal

dimensions of ecological phenomena have always

been inherent in the conceptual framework of ecology,

it is only relatively recently that these spatio-temporal

dimensions have been incorporated explicitly into eco-

logical theory, sampling design, experimental design,

and formal models (Levin 1992, 2000). Furthermore,

all phenomena of ecological interest have both spatial

locations, which can be designated by geographic

coordinates, and other aspatial characteristics, which

are those attributes that do not require location to be

meaningful. That being the case, we can have different

perspectives on how to proceed with the analysis of

these phenomena:

� the spatial locations can be included explicitly for

the purpose of understanding spatial structure and

pattern;

� the aspatial characteristics can be analysed separ-

ately by ignoring, or controlling for, their relative

positions, defined by neighbours, or spatial loca-

tions, given by x and y in some coordinate system; or

� the spatial locations can be incorporated directly

into the evaluation of those aspatial characteristics.

Before getting to the details of spatial statistics, we will

review what we mean by spatial analysis, because

it has a broad historical base and a wide range of

methods included within it. There are several possible

classifications of spatial analysis methods, but it is diffi-

cult to provide a classification that is ‘simultaneously

exclusive, exhaustive, imaginative, and satisfying’

(Upton & Fingleton 1985, p. 1). A number of authorities

on spatial analysis have offered different classifications.

For example, Haining (2003) gave a list of three main

elements:

(1) cartographic modelling,

(2) mathematical modelling,

(3) statistical methods for spatial data.

Fotheringham & Rogerson (2009) proposed four classes:

(1) summary methods,

(2) exploratory data analysis,

(3) comparisons with randomness, including inference,

(4) mathematical modelling and prediction.

We propose a slightly more detailed classification (see

also Box 1.1):

(1) describing and testing spatial structure,

(2) spatial extrapolation and interpolation,

(3) spatial partitioning,

(4) spatial regression and spatial simulation,

(5) spatial interaction,

(6) spatio-temporal analysis and modelling.

A large number of spatial statistics are already available

and new methods are constantly being developed in

various elements of these classifications. The presenta-

tion in this book will not cover all possible approaches,

but will concentrate on those that we think are the most

important for ecological research. We acknowledge that

we are omitting several important fields of research and

schools of thought. For example, we do not attempt to

cover spatial issues related to information theory and
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spatio-temporal modelling since these topics deserve

and require a whole book each.

In recent years, a very active field of research that rests

on spatial analysis has emerged as the broad field of

macroecology, which looks at the relationships between

organisms and the environment at large spatial scales,

focusing on abundance, distribution, and diversity

(Brown 1995; Gaston & Blackburn 2000; Marquet

2009). It has evolved out of topics originally included

in biogeography. Although there is a clear link between

some aspects of what is now included in macroecology

and the topics that are dealt with in this book on spatial

analysis, such as species-area relationships or spatial

turnover of species, there are a large number of topics

in macroecology that are less directly linked, such as

the relationships between body-size and extinction or

Box 1.1 Classification of the subjects of spatial analyses

Spatial structure: (a) this can refer to the degree of dependence in the values of a variable between

neighbouring locations, usually as a function of distance, Euclidean or otherwise. Most such analyses are

‘global’ with values of a single statistic to summarize the entire study area (Chapters 4, 5, and 6), but they can

be ‘local’, where subsets of the locations are used to calculate a value for each sampled location (Chapter 6). (b)

Spatial structure can also refer to the topology of the system under study, whether due to the physical

relationships of the sub-units that constitute the system or the connections that join them one to another.

Spatial extrapolation and interpolation: using the known values from locations that have observations and

the degree of spatial autocorrelation based on the distance between locations, the values of the variable can

then be estimated for locations that do not have observations. Extrapolation refers to the situation where the

unsampled locations of interest are beyond the range of the sampled locations with known values, whether

outside the whole sample area or outside a convex hull of the samples; interpolation is where the unsampled

locations are within the area covered by the locations with known values.

Spatial partitioning: creates spatial clusters using either clustering methods that group sampling locations

together based on the degree of similarity of the variable(s) measured, or boundary detection methods that

separate sampling locations by identifying the high rates of change, i.e. possible boundaries, between sampling

locations.

Spatial regression and spatial simulation: modelling that includes spatial dependency and spatial location

in such a way that closest values have the greatest effect on the result for a specific location. Autoregressive

models, autologistic regression, geographically weighted regression, etc., are used to evaluate the relationship

of one set of variables to another. A classic example of non-spatial regression is the relationship between the

measured plant metabolic rate and ambient temperature; and its spatial version would apply if the relationship

was being investigated in the field. Then, the spatial component could appear as autocorrelation in the

metabolic rates due to patchy clonal structure of the plants, or through autocorrelation in the temperature

regime because of proximity and the topography of the field.

Spatial interaction: examines the flow of material or energy or information among locations and the factors

that affect the flow such as distance, density, and resistance. This kind of analysis requires an underlying

topology of the connections between locations, and therefore leads into the requirements and possibilities of

Graph Theory, the branch of Mathematics that deals with structure in the abstract and also in a spatial context.

(We provide a full chapter on Spatial Graph Theory and its applications in spatial analysis: Chapter 3.)

Spatio-temporal analysis and modelling: include the spatial estimation of parameters and their temporal

changes using spatio-temporal statistics and the spatial modelling of variables using spatial regression and spatial

ordination (Chapter 7). We have not covered the topic of spatio-temporal analysis fully in this revision; the topic

deserves a whole book to itself and that book now exists (Cressie &Wikle 2011), and our book is already too long!
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between species richness and energy (Gaston & Black-

burn (2000) give a partial list of macroecology topics).

For that reason, we will concentrate mainly on the

inherently spatial aspects and on spatial analysis. The

link between the material described in this book and

the broad endeavour of macroecology may have been

strengthened by popular software packages such as

‘Spatial Analysis in Macroecology’ (SAM; Rangel et al.

2010) and ‘PASSaGE’ (Rosenberg & Anderson 2010).

These provide implementation of many of the methods

described in this book through graphical interfaces.

Because commentary on software becomes so quickly

out-of-date, however, we will not make specific recom-

mendations on software available to carry out the tech-

niqueswe describe. Insteadwe suggest that readers seek

technical guidance on how to perform spatial analysis in

R (see Diggle & Ribeiro Jr. 2007; Bivand et al. 2008;

Borcard et al. 2011; Plant 2012), because the use of

R as the environment for analysis seems to be becoming

firmly established in ecological research.

There are a number of texts on various aspects of

spatial statistics, including Anselin (1988), Haining

(1990, 2003), Bailey & Gatrell (1995), Manly (1997),

Legendre & Legendre (1998), Dale (1999), O’Sullivan &

Unwin (2003), Illian et al. (2008), and Fotheringham &

Rogerson (2009). Obviously no single book can provide

everything that might be needed. Several advanced

spatial statistical books cover the mathematics of

some of these methods (e.g. Ripley 1981; Cressie

1993; Cressie & Wikle 2011; Dutilleul 2011), but the

material may not be easily accessible to most ecolo-

gists and may not provide explicit guidance for appli-

cation in the ecological context. In fact, there is always

some potential for the misapplication of these tech-

niques, which can lead to incorrect inferences.

Our intention is to present the concepts needed to

perform valid spatial analyses and interpretation.

To enhance the presentation, we include various real

and simulated data sets to illustrate the behaviour of

the methods, and the relationships among them.

In this book, we concentrate on the spatial aspects of

ecological data analysis to provide some advice and

guidance to practising ecologists. The intended audi-

ence is graduate students and other practising research-

ers, who have some familiarity with basic statistics and

related approaches to ecological analysis but who are

not themselves experts in spatial statistics.

The structure of the book is straightforward. We begin

by introducing important terms and concepts, taking the

opportunity to clarify how they will be used in subse-

quent discussion. There are then a number of chapters

that present spatial methods based on their objectives,

with a few excursions to deal with special topics. Each

chapter includes a description of methods, some

examples, an evaluation of themethods’ characteristics,

and advice on the choice of method. The last chapter

asks and tries to answer the question: where do we go

from here? It describes what we see as the directions

for future development in this field and the areas where

we perceive the need for more work (and there are lots

of these!). We also try to summarize our thoughts on

the themes and threads that run through the book and

unify it, and we provide some advice on the kinds of

skills that we think ecologists will need for future work.

In this introduction chapter, we present a series of

concepts and notions that are the foundation needed

to understand the spatial statistics presented in the

chapters to come.

1.1 The spatial context

In ecological studies, explicit considerations of spatial

structure have come to play an important role in our

efforts to understand and to manage ecological pro-

cesses. Therefore, the description and quantification of

ecological patterns, both spatial and temporal, are

important first steps in our quest to comprehend the

complexity of nature. Description is not usually an end

in itself, but rather the beginning of a process that

leads to insight into natural complexity, and which in

turn generates the new ecological hypotheses to be

tested (Figure 1.1). Ecological research is an iterative

process that can provide, at each stage, some insights

about the underlying ecological processes through the

quantification of ecological patterns.

The match between pattern and process is far from

perfect because changes in process intensity can create

different patterns, and because several different pro-

cesses can generate the same pattern signature
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(Figure 1.2; Box 1.2). Furthermore, the processes may

create a mosaic of intermingled and confounded

spatial patterns, and the spatial legacy of this hetero-

geneity affects the intensity and types of ecological

processes that act on them through time. These feed-

back effects between processes and patterns are diffi-

cult to distinguish (Figure 1.2c). Prior knowledge of the

scope of these processes can help to guide the scale

chosen for the investigation of spatial patterns.

1.2 Ecological data

Various kinds of measurements can be considered as

ecological data, from qualitative records (e.g. taxo-

nomic species), semi-quantitative observations (e.g.

non-additive values such as pH), to quantitative

measures (e.g. abundance data, height, weight). These

measurements can be made for individuals (point data:

e.g. discrete objects, events, or organisms), along a line

(transect data), over an area (surface data: e.g. within a

sampling unit), or in a volume (e.g. phytoplankton

productivity in a water column with x, y and z coordin-

ates); see Figure 1.3. When sampling units are used,

these can either be spatially adjacent and contiguous to

one another or separated by constant or variable dis-

tances (Figure 1.3). In either case, the measurements

are subject to several precision and accuracy issues.

The quality of the measurements are a function of (1)

for quantitative measurements, the precision and

accuracy of the instrument or of an observer to count

species abundance or to estimate per cent cover with

the same accuracy over time; (2) for qualitative data,

the ability of the observer to identify species correctly;

(3) for positional data of either the individuals or sam-

pling units, the precision and accuracy of the instru-

ment used (GPS, telemetry, laser, tape measure, etc.);

(4) the precision in data gathering and transfer to

digital form (accuracy of transcription); and (5) the

appropriate match between the sampling unit size

and the variable measured (Fortin 1999a; Bradshaw &

Fortin 2000). All these accuracy levels and types of

errors will affect the identification and quantification

of spatial patterns (Hunsaker et al. 2001). All these

accuracy problems cannot be eliminated but they can

be minimized or at least acknowledged while analysing

and interpreting spatial structure.

1.3 Spatial structure: spatial dependence
and spatial autocorrelation

Most ecological data have some degree of spatial struc-

ture, and at least part of that structuremay followwhat is

knownas the first law of geography: ‘Everything is related

to everything else, but near things are more related than

NATURE

Data analysis/detecting pattern 
(Generalization; distortion)

Hypothesis 
(Generalization)

Experimentation/modelling
(Hypothesis testing)

Statistical interpretation

Ecological interpretation

Sampling design 
(Spatial & temporal resolutions)

Figure 1.1 Flow of the steps involved in the study of nature

and its complexity. As nature acts at several temporal and

spatial scales, the selected sampling design narrows down the

temporal and spatial limits of the domain under study (as

indicated by the funnel effect illustrated in grey). By imposing

arbitrary and potentially inappropriate scales by means of the

sampling design, the identified spatial patterns can be

distorted. From these spatial patterns, generalizations and

hypotheses can be drawn about the ecological processes.

Then specific experiments or models can be used to test the

newly defined hypotheses. And finally, some statistical

interpretations and ecological understanding can be reached.

At each step, the spatial and temporal domains of inference of

the findings diminished.
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Fire

Vegetation a: trend
Vegetation b: patchy
Vegetation c: random
Vegetation d: patchy
Vegetation e: patchy

Spatial Dependence:
Topography
Drainage
Soil

Spatial autocorrelation:
Vegetation a
Vegetation b
Vegetation c
Vegetation d
Vegetation e

(a) Same process resulting in different spatial pattern due to initial spatial pattern of vegetation

Stochastic process(es)Initial spatial patterns
(Spatial legacies) Resulting spatial pattern

Fire
Drought
Grazing
Insect outbreak

Vegetation v: patchy

(b) Several processes resulting in the spatial pattern

Spatial dependence:
Topography
Drainage
Soil

Spatial autocorrelation:
Vegetation v

Stochastic process(es)Initial spatial patterns
    (Spatial legacies) Resulting spatial pattern

Fire
Drought
Grazing
Insect outbreak

Vegetation a: trend + patchy
Vegetation b: repeated patches
Vegetation c: patches at 2 scales
Vegetation d: patchy
Vegetation e: repeated patches

?

(c) Several processes resulting in different spatial patterns

Spatial dependence:
Topography
Drainage
Soil

Spatial autocorrelation:
Vegetation a
Vegetation b
Vegetation c
Vegetation d
Vegetation e

Stochastic process(es)Initial spatial patterns
    (Spatial legacies) Resulting spatial pattern

Figure 1.2 Relations between pattern and process. (a) Given the initial conditions of the environmental factors and the legacy of

the landscape spatial structures, the same intensity of a process can result in different spatial patterns. (b) For a given spatial

legacy, several processes can generate a given spatial pattern. (c) Most of the time there are several spatial legacies nested within

each other, which are affected by several processes resulting in several distinct spatial patterns.
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Box 1.2 What is a pattern?

For clarity, we need to define ‘pattern’ and to circumscribe the analytic limits of detecting it accurately. One

definition of ‘a pattern’ is ‘a distinctive form’ (Webster 1989), and another is ‘regular form or order’ (Fowler &

Fowler 1976) and hence the term ‘pattern’ is applied to a characteristic of a system that can be detected and

described, and is somehow contrasted with ‘random’. Either definition can then be qualified according to

whether one is interested in the spatial or temporal component of a pattern. The term ‘pattern’ sometimes has

the suggestion that it consists of several repeated units, such as patches and gaps that alternate in a landscape.

Throughout the book, we also use the term ‘structure’ as a close equivalent of pattern in some contexts; again,

there is often the implication that a structure consists of identifiable sub-units. These definitions do not suggest

sufficiently well that pattern in ecological systems is dynamic, evolving, or changing. Indeed, a spatial pattern

that we observe is often ‘a single realization’ or ‘snapshot’ of the results of a process or of a combination of

processes at one given time in one given place (Fortin et al. 2003). This is why spatial pattern is so important in

ecology and why we emphasize its analysis as a crucial step toward understanding vital ecological processes.

x-y coordinates x-y and v(a)

Lattice(b) Transect

(c) Random Systematic Stratified random

Figure 1.3 Spatial sampling strategies to collect ecological data:

(a) point datamethods: exhaustive survey of the geographic x–y

coordinates of all the individuals of a species (left panel) or of

more species (right panel; here two species, where v indicates

the attribute of each individual – in this case, the species' name);

(b) contiguous sampling units: transect (left panel) and lattice

(right panel); and (c) sparse sampling units (random,

systematic, stratified random). See text for more details.

Large scale
trends
Gradients

DATA

=

(a) Observed data

x

Cycle
Patches
Hot spots

+(b) Trend removed

x

Noise

+(c) Patches removed

x

Figure 1.4 Nested spatial patterns (signals) imbedded in

ecological data: (a) if the data are gathered along a temperature

gradient, tree height can increase in a linear fashion at large

scale; (b) both topography and spatial dispersal processes can

generate patchy patterns at intermediate, landscape, scale; and

(c) there is only random noise at the micro, local, scale.
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distant things.’(Tobler 1970). In ecological data, the basic

structure of similarity that declines with distance may be

complicated by patchiness in the system. Indeed the

spatial structure of ecological phenomena can take sev-

eral different forms: (1) a directional trend or gradient

(Figure 1.4a); (2) nonrandomdispersion of objects that is

aggregated, clumped, or patchy (Figure 1.4b); (3) disper-

sion that is apparently random (Figure 1.4c); and (4) for

discrete objects like point events, nonrandomdispersion

that is uniform, also called regular or overdispersed.

Either exogenous or endogenous processes can generate

any of these patterns. In addition several factors can act

together, either additively, or multiplicatively or other-

wise when the factors are nonlinear (for example, a

threshold response to habitat fragmentation). Hence

numerous spatial patterns can be identified when the

variables of interest (say, species abundances) respond

to an exogenous process (such as disturbance) or to

underlying environmental conditions (such as the spatial

configuration of heterogeneity). For example, soil patchi-

ness can produce regions of high plant density, within

which the locations of the individuals are either appar-

ently random or overdispersed. In these cases, any local

similarity is due to the species responding to external

processes, which have their own spatial structure. On the

other hand, when endogenous processes (like dispersal

or spatial inhibition) are dominant, the observed pattern

of the plants is an inherent property of the variable of

interest.

Spatial patterns usually result from a mixture of both

exogenous (‘induced’) and endogenous (‘inherent’)

processes, resulting in spatial dependence among organ-

isms. Here, the term ‘spatial dependence’ is broadly inter-

preted as including both the species’ response to

underlying exogenous processes and the species’ spatial

autocorrelation due to endogenous processes (Wagner &

Fortin 2005). The term ‘autocorrelation’ refers to correl-

ation among values of a single variable. The adjective

‘spatial’ indicates that the correlation is a function of

locations in space or the distances between locations.

(a)

.1 .1 .1.1.1

.2 .2 .2.2.2

.4 .4 .4.4.4

.3 .3 .3.3.3

.5 .5 .5.5.5

.1 .2 .1.1.3

.2 .4 .2.4.5

.2 .4 .2.4.5

.3 5 .3.5.5

.1 .3 .1.3.4

.

(b)

.4 .1 .2.3.4

.3 .2 .5.1.4

.5 .2 .3.4.5

.5 .3 .1.3.2

.1 .1 .2.4.5

(c)

Figure 1.5 Spatial patterns: (a) gradient, (b) single patch and

(c) random (although the isolines seem to suggest a patchy

pattern). Note that each panel has the same number of

sampling locations (5� 5¼ 25), as well as the same frequency

distribution of the count of individuals (5 ones; 5 twos; 5

threes; 5 fours and 5 fives).
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Spatial dependence means that there is a lack of

independence among data from nearby locations. This

definition of spatial dependence is the most widely used

by spatial statisticians and geographers (Cressie 1993;

Haining 2003).

Bailey & Gatrell (1995, p. 32) defined spatial

dependence using an analogy to first and second

moments: a first-order effect is due to variation in the

mean value of a process over the study area, correspond-

ing to the global trend illustrated in Figure 1.5a, and

second-order effects are due to spatial autocorrelation of

the process, implying that deviations from the mean are

more alike at neighbouring sampling locations, and

hence are equated to localized trends and small-scale

patchiness (Figure 1.5b). In describing spatial depend-

ence of plants, where exogenous processes predominate,

we would say that the spatial dependence is ‘induced’ by

the underlying variable that is itself spatially autocorre-

lated. Therefore, although Legendre (1993) used the term

‘false’ spatial autocorrelation to refer to species’ response

to the spatial structure of exogenous processes,we refer to

this phenomenon as ‘induced spatial dependence’.

These spatial patterns can be modelled by regression

where the independent variables are themselves

spatially structured (Legendre & Legendre 1998).

For endogenous processes, individuals of a species are

more likely to be spatially adjacent in a patchy fashion,

related to what is referred to as ‘true’ spatial

autocorrelation (Legendre 1993; Legendre & Legendre

1998) or, as we will recommend, ‘inherent’ spatial

autocorrelation. This means that nearby values of a vari-

able are more likely to be similar than they would be by

chance. The spatial structure can therefore be modelled

with second-order statistics (e.g. spatial covariance

rather than just mean value) that characterize the local

spatial variability of the variable. In some ecological

applications, high similarity at small scales declines with

distance, and so the equation that describes this decline

is often a decay function, and the phenomenon is

described as the ‘distance decay’ of similarity.

In general, spatial dependence is estimated by com-

paring the value at one location with those values at

given distances away (termed spatial lag or distance

interval), say at 1 m, 2 m, 3 m, and so on. In Figure 1.6,

spatial autocorrelation occurs only due to seed

dispersal from a tree and we expect to find fewer and

fewer seeds as the distance from the source increases.

The degree of spatial autocorrelation also decreases

with distance, for example from locations A to D in

Figure 1.6. At short distances from the tree, values of

seed abundance should be similar at nearby locations,

giving positive autocorrelation, and as the distance at

which the comparison is made increases, the values

are less likely to be similar. They can become either

independent, with no spatial autocorrelation, or dis-

similar, with negative autocorrelation. Over large

areas, plants can have a patchy pattern that repeats

itself to create spatial structure at two scales: (1) a

within-patch scale of plants and (2) a between-patch

scale of patches in their landscape.

The magnitude of the ecological process usually has

a direct effect on the degree of spatial autocorrelation

in the variable that it influences. The degree and

A

B

C

D

Figure 1.6 Seed abundance from a tree source. The filled

circle indicates the location of the tree source from which

seeds are dispersed by wind. As the distance from the tree

increases, the amount of seeds decreases (as indicated by the

grey-shaded gradient: dark grey for high abundance; light grey

for low abundance; white for no seeds). Positive spatial

autocorrelation exists between adjacent sampling units A and

B; no significant spatial autocorrelation exits between A and C;

and negative spatial autocorrelation exists between A and D.
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shape of spatial autocorrelation can vary with direction

(Figures 1.6 and 1.7). In the previous example, with the

presence of strong directional wind, seeds are more

likely to be dispersed downwind (say northeast), an

elongated, elliptical, patch of seeds results (Figure 1.6).

This kind of spatial pattern is said to be ‘anisotropic’,

because the magnitude and range of spatial autocorre-

lation vary with direction; the opposite is ‘isotropic’

where spatial autocorrelation magnitude varies simi-

larly with distance in all directions (Figure 1.7). Various

types of internal and external processes can create

anisotropic pattern: topography, gradients, streams

and riparian strips, etc. A favourite example of aniso-

tropic pattern in vegetation is the ‘brousse tigrée’

striped scrubland that develops on gentle slopes in arid

regions (see Lejeune & Tlidi 1999; Wu et al. 2000), but

string bogs (Koutaniemi 1999; Rietkerk et al. 2004;

Couwenberg & Joosten 2005), and wave-regenerated

forests (Sprugel 1976; Ichinose 2001) are other examples

that are equally well-known. Anisotropic spatial pat-

terns can also appear as artifacts of the shape of the

sampling units used to collect the data (cf. Fortin 1999a).

1.4 Spatial scales

Without processes, therewould obviously be no pattern,

but it is also clear that spatial pattern has its own effects

on processes, including those that give rise to the

pattern. When the scale at which the processes are

realized is unknown, analysing spatial pattern using

different approaches and scales of observation can pro-

vide a consensus that contributes to our understanding

of the ecological complexity. To clarify this discussion

we have defined ‘pattern’ in Box 1.2. Spatial pattern in

ecological systems refers to a certain degree of predict-

ability for characteristics, based on the spatial location.

In these systems, spatial pattern is rarely static, but

dynamic and changing in response to processes internal

to the system itself or imposed by external forces.

The concept of spatial pattern ranges from obvious

structure such as windfall gaps in a forest canopy, to

more diffuse spatial heterogeneity, such as the

patchiness of species on a level prairie. In either case,

spatial pattern is the nonrandom arrangement of quan-

titative or qualitative characteristics, often repetitive, as

a form of spatial heterogeneity. The most obvious con-

trast to spatial heterogeneity is spatial homogeneity, but

true homogeneity is most frequently a conceptual null

model and is very rare in reality (Fischer & Linden-

mayer 2007). Spatial heterogeneity depends on scale:

at a large extent and coarse resolution, a pattern may

appear to be homogeneous, but at a small extent and

finer spatial resolution, heterogeneity emerges. Ironic-

ally, in the absence of pattern, there really is no scale to

be detected and so an examination of the results of a

process, the spatial pattern, is required to determine the

spatial scale of that process (Dungan et al. 2002).

The term ‘scale’ is used by ecologists to refer to several

concepts, including the physical extent of the processes

(the ‘range’) and the spatial and temporal resolution of

the data (‘grain’). Our perception of the spatial structure

of an area is directly related, and limited, to both the

study area or ‘extent’ and sampling unit size or ‘grain’ at

whichwe analyse it (Wiens 1989). Thephysical distances

that determine what is considered local versus global

can vary depending on the system; just as ‘landscape’ is

a level of organization with the distance it encompasses

being determined by the characteristics of the organism

of interest: such as earthworm versus coyote.

Ecological data usually include several spatial scale

patterns which are confounded (Figure 1.4): (1) trends

at larger scales, (2) patchiness at intermediate and local

scales, and (3) random fluctuations or noise at the

(a) Isotropy
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(b) Anisotropy

E

S

W

N

Figure 1.7 Pattern directionality. (a) Isotropic and (b)

anisotropic spatial patterns. Each isoline indicates the same

value of the variable decreasing from the highest value at the

centre to the lowest value at the periphery.
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smallest scale. Therefore, ecological data are the result

of embedded and confounded processes; hence, as

ecologists, we try to disentangle the spatial scales of

these processes using spatial analysis. The components

that affect our ability to identify spatial patterns and

their underlying processes accurately are numerous,

but they can be organized into three categories

(Figure 1.8; Dungan et al. 2002): (1) the extent of spatial

expression of the processes themselves; (2) the sam-

pling design used to measure ecological data (sample

versus population data; local versus global level); and

(3) the statistical tools used to characterize the spatial

pattern of either the entire sampling area (i.e. global

spatial statistics) or each sampling location (i.e. local

spatial statistics).

In studies where the scale of observation is a large

heterogeneous area in which many processes may

occur, data cannot be collected as intensively as at

the plot level. Hence, the data are usually obtained

by remote sensing or as inventory maps created from

air photo interpretation. Such information provides

mostly coarse categorical data, such as forest versus

urban, or mature mixed forest versus peatland. There-

fore, while spatial statistics are used to characterize

spatial pattern from quantitative data at the plot level

(Haining 1990; Cressie 1993), various landscape

indices are commonly used to summarize the spatial

configuration of categorical data at the landscape level

(O’Neill et al. 1988; Baker & Cai 1992; McGarigal &

Marks 1995; Gustafson 1998; Leitão et al. 2006).

When several processes act together, they can com-

bine in different ways to produce the observed spatial

pattern (Figures 1.2 and 1.4). In the simplest case, the

combination is additive and the resulting pattern is the

sum of patterns generated by the individual processes

acting independently. Additive combination is illus-

trated in Figure 1.4; a large-scale trend due to an

environmental gradient is augmented by patchiness

caused by limited species dispersal, and a random

component (‘noise’). Additive spatial pattern can be

analysed by removing each contributing pattern, and

then quantifying the characteristics of the residual. For

example, a linear trend can be removed by linear

detrending, and if some pattern remains in the

residuals, a second detrending with another type of

structure (quadratic, cubic, etc.) can be applied. While,

in theory, detrending is an elegant solution, in practice

it is difficult to be certain that only the targeted trend is

removed and no other information of importance from

the other scales. This is why, in the absence of prior

knowledge or a hypothesis about the underlying pro-

cess and its resulting pattern, several authors recom-

mend not detrending data at all (Osborne & Suarez-

Seoane 2002).

Nowadays, current global change studies are usually

carried out at the regional level where multiple pro-

cesses occur at different spatial scales. In such condi-

tions, processes interact in different ways to create

non-additive spatial patterns, which may appear to

be characteristic of non-stationary processes. Patterns

can combine multiplicatively and this may be particu-

larly obvious in the case of presence : absence data

(see Dale 1999, fig. 3.5). Multiplicative combination

can occur where different factors in the environment,

each of which can cause a species to be absent, act
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Figure 1.8 Three main components that interact and affect

our ability to identify and characterize spatial patterns

accurately: the scale of expression of processes, the sampling

design being used at the plot level or landscape level, and the

spatial statistics characterizing either the spatial structure of

each sampling location (local spatial statistics) or the entire

study area (global spatial statistics).
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