Smart Solutions to Climate Change

The failure of the Copenhagen climate conference in December 2009 revealed major flaws in the way the world's policy makers have attempted to prevent dangerous levels of increases in global temperatures. The expert authors in this specially commissioned collection focus on the likely costs and benefits of a very wide range of policy options, including geoengineering; mitigation of CO₂, CH₄, and "black carbon"; expanding forest Carbon Sequestration; R&D of low-carbon energy; and encouraging green technology transfer. For each policy, the authors outline all of the costs, benefits, and likely outcomes, in fully referenced, clearly presented chapters accompanied by shorter, critical alternative Perspective papers. To further stimulate debate, an Expert Panel of economists, including three Nobel laureates, evaluates and ranks the attractiveness of the policies.

This authoritative and thought-provoking book will challenge readers to form their own conclusions about the best ways to respond to global warming.

BJØRN LOMBORG is Director of the Copenhagen Consensus Center and Adjunct Professor in the Department of Management, Politics and Philosophy at Copenhagen Business School. He is the author of the controversial bestseller, *The Skeptical Environmentalist* (Cambridge, 2001), and was named as one of the top 100 intellectuals by *Foreign Policy* and *Prospect* magazines in 2008.

Smart Solutions to Climate Change

Comparing Costs and Benefits

Edited by BJØRN LOMBORG

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521138567

© Copenhagen Consensus Center 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-76342-4 Hardback ISBN 978-0-521-13856-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of figures vii List of tables х List of contributors xiv Acknowledgments xix List of abbreviations and acronyms XX Introduction 1 Bjørn Lomborg PART I THE SOLUTIONS 1 Climate Engineering 9 J. Eric Bickel and Lee Lane ALTERNATIVE PERSPECTIVES 1.1 Roger A. Pielke, Jr. 52 1.2 Anne E. Smith 62 2 Carbon Dioxide Mitigation 74 Richard S.J. Tol ALTERNATIVE PERSPECTIVES 2.1 Onno Kuik 106 2.2 109 Roberto Roson 3 Forestry Carbon Sequestration 114 Brent Sohngen ALTERNATIVE PERSPECTIVE Sabine Fuss 3.1 133 4 Black Carbon Mitigation 142 Robert E. Baron, W. David Montgomery, and Sugandha D. Tuladhar ALTERNATIVE PERSPECTIVE Milind Kandlikar, Conor C.O. 4.1 Reynolds, and Andrew P. Grieshop 5 Methane Mitigation 172 Claudia Kemfert and Wolf-Peter Schill ALTERNATIVE PERSPECTIVES

5.1 David Anthoff 198

v

159

vi Contents

- 5.2 Daniel J.A. Johansson and Fredrik Hedenus 208
- Market- and Policy-Driven Adaptation 222
 Francesco Bosello, Carlo Carraro, and Enrica De Cian
 ALTERNATIVE PERSPECTIVES
 6.1 Samuel Fankhauser 277
 6.2 Frank Jotzo 284
- 7 Technology-Led Climate Policy 292 Isabel Galiana and Christopher Green ALTERNATIVE PERSPECTIVES
 - 7.1 Valentina Bosetti 340
 - 7.2 Gregory Nemet 349
- 8 Technology Transfer 360 Zili Yang ALTERNATIVE PERSPECTIVE 8.1 David Popp 371

PART II RANKING THE OPPORTUNITIES

Expert Panel Ranking 381 Nancy L. Stokey, Vernon L. Smith, Thomas C. Schelling, Finn E. Kydland, and Jagdish N. Bhagwati

Conclusion 395 *Bjørn Lomborg*

Index 397

Figures

1.1	NC temperature changes with	
	the deployment of SRM	
	(2005–2205)	page 30
1.2	Difference in temperature	
	(a) relative to NC and (b) the	
	equivalent equilibrium radiative	
	forcing (2005–2205)	31
1.3	OC temperature changes with the	
	deployment of SRM (2005-2205)	32
1.4	(a) Optimal emissions controls	
	and (b) carbon taxes with the use	
	of SRM (2005–2205)	32
1.5	Difference in SRM CO ₂	
	concentrations compared to OC	
	and NC (2005–2205)	33
1.6	OC temperature changes with	
	2055 deployment of SRM	
	(2005–2205)	34
1.7	Temperature changes with the	
	deployment of SRM under a 2°C	
	temperature constraint	
	(2005–2205)	35
1.8	(a) Optimal emissions rates and	
	(b) carbon taxes under a 2°C	
	constraint (2005–2205)	35
1.9	OC temperature changes with the	
	deployment of AC (2005–2205)	38
1.10	(a) Optimal emissions controls	
	and (b) carbon taxes with the use	
	of AC (2005–2205)	38
1.11	Difference in AC and SRM CO ₂	
	concentrations compared to OC	
	(2005–2205)	39
1.1.1	Radiative forcing in context	56
1.2.1	Representation of deterministic	
	analysis of chapter 1 as a decision	l
	tree	65
1.2.2	Representation of SRM decision	
	as a decision under uncertainty	65

1.2.3	Decision tree for SRM decision	
	made with improved information	
	from R&D	68
2.1	The fourteen estimates of the	
	global economic impact of	
	climate change	77
2.2	Average reduction in GDP due to	
	climate policy aiming at three	
	alternative stabilization targets	
	for atmospheric GHGs	
	(2020–2100)	87
2.3	Average carbon tax needed for	
	three alternative stabilization	
	targets for atmospheric GHGs	
	(2020–2100)	88
2.4	Gross world income for the	
	no-policy and five alternative	
	policy scenarios (2000-2100)	91
2.5	Global CO ₂ emissions from fossil	
	fuel combustion and industrial	
	processes for the no-policy and	
	five alternative policy scenarios	
	(2000–2100)	92
2.6	Atmospheric concentration of	
	CO ₂ for the no-policy and five	
	alternative policy scenarios	
	(2000–2100)	92
2.7	Monetized impact of climate	
	change for the no-policy and five	
	alternative policy scenarios	
	(2000–2100)	93
2.8	Monetized and normalized benefit	
	of the five alternative policy	
	scenarios (2000–2100)	94
2.9	Normalized cost of the five	
	alternative policy scenarios	
	(2000–2100)	94
2.10	BCR of the five alternative policy	
	scenarios (2000–2100)	95

vii

viii List of figures

3.1	Marginal cost functions for	
	carbon sequestration (2030)	119
3.2	Carbon price paths under three	
	scenarios $(r = 5\%)$ (2010–2100)	122
3.3	Carbon price paths under three	
	scenarios $(r = 3\%)$ (2010–2100)	124
3.4	Global marginal cost curve (2030)	
	with and without transaction	
	costs	127
4.1	Uncertainty in temperature	
	sensitivity	143
4.2	Contribution of black carbon to	
	increases in average global	
	temperature	146
4.3	Black carbon emissions	
	(1900–2000)	147
4.4	Regional share of black carbon	
	emissions (2000)	147
4.5	Black carbon emissions, by region	
	(2000)	148
4.6	MACs for black carbon	151
5.1	Global anthropogenic GHG	101
011	emissions, by gas (2005)	173
5.2	Global anthropogenic CH ₄	1,0
0.12	emissions, by source (2005)	174
5.3	CH_4 emissions, different regions	17.
0.0	(1970–2005)	175
54	Global CH ₄ emissions: baseline	175
	and economic mitigation	
	potentials (2020)	186
5.1.1	Temperature for BAU and	100
01111	solution A $(2000-2100)$	199
5.1.2	Temperature	201
521	Temperature response following	201
0.2.1	emission pulses of CO_2 and CH_4	210
6.1	Temperature estimates of the	
011	IPCC SRES (IIASA), the	
	WITCH model and the	
	AD-WITCH baseline scenario	
	(2010–2100)	224
6.2	Climate change damages as a	
0.2	function of global mean	
	temperature increase (above	
	preindustrial levels)	225
63	Mitigation and adaptation	223
5.5	impacts: a schematic "decision	
	snace"	231
	SP	<i></i> 1

	6.4	Technical change and optimal	
9		abatement in the presence of	
		mitigation and adaptation	231
2	6.5	Equilibrium (a) mitigation and (b)	
		adaptation in the non-cooperative	
4		scenario (2010–2100)	235
	6.6	Residual damage in the	
		non-cooperative scenario	
7		(2010–2100)	236
	6.7	Residual damage in the	
3		non-cooperative scenario: high	
		damage low discount rate	
		(2010–2100)	237
6	6.8	Optimal (a) mitigation and	
		(b) adaptation in a cooperative	
7		scenario (2010–2100)	238
	6.9	Effects of (a) mitigation on	
7		(b) adaptation $(2010-2100)$	239
	6.10	CO_2 emissions (2010–2100)	240
8	6.11	Global welfare $(2010-2100)$	240
1	6.12	Scale and timing of adaptation	
		investments. (a) cooperative.	
3		(b) non-cooperative $(2010-2100)$	243
	6.13	Adaptation expenditures in (a)	
4	0110	non-OECD and (b) OECD	
•		countries $(2010-2100)$	244
5	6.14	The structure of an integrated	
	0111	impact assessment exercise	249
	615	Direct vs final climate change	,
6	0110	costs as percentage of regional	
-		GDP (2050)	250
9	6 16	Role of impact interaction:	-00
1	0.10	percentage difference between	
		GDP costs of all climatic impacts	
0		implemented jointly and the sum	
0		of GDP costs associated with	
		each impact implemented	
		individually	250
	6 17	Final climate change impact as	250
1	0.17	percentage of regional GDP	
-			251
	6 18	Economic cost of climate change	231
	0.10	including market_driven	
5		adaptation	252
5	6 10	Climate change damage with and	252
	0.19	without market_driven adaptation	
1		(2005-2100)	252
1		(2003-2100)	<i>232</i>

6.20 (a) Non-OECD and (b) OECD climate change damage with and without market-driven adaptation (2005 - 2100)253 6.21 Total protection expenditure (2010 - 2100)253 6.22 Temperature change in the four scenarios (2010-2100) 259 6.23 Residual damages from climate change in the four scenarios (2005 - 2100)260 6.A1.1 Adaptation tree in the AD-WITCH model 264 6.A3.1 Adaptation tree in the AD-WITCH model: an alternative specification 270 6.A3.2 (a) and (b) Adaptation expenditure (2010-2100) 271 6.1.1 Benefit of low-cost adaptation in agriculture 280 World energy use, by fuel type 7.1 (1990 - 2030)294 7.2 Assumptions of the effects of technological change on future emissions in the SRES scenarios and IPCCV AR4 296 7.3 Energy efficiency-carbon-free power tradeoff 297 7.4 Future carbon and technology prices (2010-2070) 310

7.5	Technology return to R&D	
	(2005–2105)	319
7.6	Emissions, by baseline/policy	
	(2020–2200)	323
7.7	Carbon intensity return to	
	R&D: alternative profiles	
	(2020–2160)	323
7.8	CIO, by scenario (2020–2200)	324
7.1.1	Carbon stored	345
7.2.1	Private and social rates of return	
	to R&D (1970–95)	350
7.2.2	Size of a market for a low-carbon	
	energy technology with and	
	without carbon price caps	351
7.2.3	US private sector energy	
	R&D and crude oil prices	
	(1970–2010)	352
7.2.4	Estimates of the value of	
	air-quality co-benefits	357
8.1	Optimal transfer amounts	
	(2000–2100)	367
8.2	Flows of benefits and costs	
	(scenario 1) (2000-2100)	367
8.3	Flows of benefits and costs	
	(scenario 2) (2000–2100)	368
8.1.1	Number of EPO patent	
	applications for renewables, by	
	type of technology (1978–2006)	372
8.1.2	Low-hanging fruit and	
	knowledge spillovers	374

List of figures ix

Tables

1.1	Benefit of SRM under NC with	
	2025 start	page 30
1.2	Benefit of SRM under OC with	
	2025 start	33
1.3	Benefit of SRM under OC with	
	2055 start	34
1.4	Benefit of SRM under 2°C	
	constraint with 2025 start	36
1.5	Benefit of SRM under	
	low-discount-rate scenario with	
	2025 start	37
1.6	Benefit of AC under OC	39
1.7	Summary of SRM benefits	40
1.8	Required injection rate for marine	
	stratiform cloud albedo	
	enhancement	41
1.9	BCRs for marine stratiform cloud	
	albedo enhancement	41
1.10	Stratospheric aerosol BCRs (naval	
	rifles)	43
1.11	Summary of BCRs for SRM	
	(market and low-discount-rate	
	cases)	44
1.1.1a	Cost of AC as a percentage of	
	global GDP, assuming 2.9% globa	1
	GDP growth to 2100	57
1.1.1b	Cost of AC as a percentage of	
	global GDP, assuming 2.5% globa	1
	GDP growth to 2100	58
1.2.1	Expected cost savings of SRM	
	strategy compared to a no-SRM	
	strategy	66
1.2.2	VOI results (assuming probability	
	of false positive, $s = 0$)	69
1.2.3	VOI results (assuming probability	
	of false positive, $s = 0.25$)	70
1.2.4	VOI for societal decision	
	(assuming probability of false	
	positive, $s = 0.25$)	72

2.1	Estimates of the welfare loss due	
	to climate change	75
2.2	The SCC of carbon	82
2.3	NPV of abatement costs and	
	benefits for the five scenarios	93
A2.1	Parameters of the CH_4 and N_2O	
	emission reduction cost curve	97
A2.2	Determinants of SF_6 emissions	98
A2.3	Parameters of (A1.11)	98
3.1	Average annual potential net	
	emissions reductions through	
	forestry (2020–50)	120
3.2	Carbon sequestration pathways for	
	combined forestry and DICE	
	model for the optimal scenario and	
	a maximum $2^{\circ}C$ temperature	
	change (2010–2100)	121
3.3	B/C estimates for the optimal	
	scenario and the scenario that	
	limits temperature increase to 2° C,	
	with interest rate $(r = 5\%)$; and the	
	same two scenarios with lower	
	interest rates ($r = 3\%$), both	
	assuming no transaction costs	121
3.4	Cumulative abatement and	
	proportion from forests and	
	energy sectors under the two	
	scenarios	123
3.5	Method of sequestration in	
	temperature and tropical forests	
	under the two policies	123
3.6	B/C estimates for the cases with	
	transaction costs equaling 20% of	
	the total cost of abatement	128
4.1	Comparison of global emission	
	estimates of black carbon	
	(1980–2000)	149
4.2	Level of black carbon under two	-
	different scenarios	150
		- •

4.2	Costs of various block corbor		5 10	Summony of charlyte coordinate	
4.3	control technologies	152	5.10	mitigation potentials at or below	
4.4	Areas where MEIs can respond to	152		different CO ₂ prices	185
7.7	climate change	154	5 1 1	Summary of relative economic	105
45	Portfolio of black carbon reduction	134	5.11	mitigation potentials at or below	
ч.5	programs	154		different CO ₂ prices	186
4.6	Overview table of costs and	154	5 1 2	BCRs for different solution	100
4.0	benefits	155	5.12	categories mitigation levels and	
411	Intervention cost ranges	164		assumptions on SCC values	187
4.1.2	Health impact and climate	104	5 13	BCRs for selected technologies	107
7.1.2	mitigation cost-effectiveness		5.15	and different assumptions on SCC	
	values for two potential stove			values	188
	interventions in developing Asia	165	5 14	Portfolio 1: total abatement level	100
413	Health impact and climate	105	5.11	costs and BCRs for SCC of	
111.0	mitigation cost-effectiveness			13\$/tCO2-eq	191
	values for three potential		5 1 5	Portfolio 1: total abatement level	171
	interventions to reduce black		0.10	costs and BCRs for SCC of	
	carbon from heavy-duty transport			46\$/tCO ₂ -eq	191
	in China and India	167	5.16	Portfolio 2: total abatement level.	
4.1.4	BCRs for the proposed black	107	0110	costs, and BCRs for SCC of	
	carbon reduction options	168		13\$/tCO ₂ -eq	191
5.1	Livestock and manure: projected		5.17	Portfolio 2: total abatement level,	
	baseline emissions and economic			costs, and BCRs for SCC of	
	mitigation potentials at different			46\$/tCO ₂ -eq	192
	CO_2 prices	181	5.1.1	Benefits and costs of solution A	199
5.2	Livestock and manure: MACs of		5.1.2	Benefits and costs of solution B	200
	selected technologies	181	5.1.3	Benefits and costs of solution C	200
5.3	Rice: projected baseline emissions		5.1.4	Benefits and costs of solution D	200
	and economic mitigation potentials		5.1.5	Net benefits	200
	at different CO ₂ prices	182	5.1.6	Costs (2010–19)	202
5.4	Solid waste: projected baseline		5.1.7	BCRs for solutions A–D	202
	emissions and economic mitigation		5.2.1	The cost-benefit case	211
	potentials at different CO ₂ prices	182	5.2.2	The cost-effectiveness case	212
5.5	Solid waste: breakeven costs and		5.2.3	The social cost of methane (CH ₄)	
	mitigation potentials for selected			through its effect on non-climate	
	technologies	183		impacts of tropospheric O ₃	214
5.6	Coal mining: projected baseline		5.2.4	Reductions in beef meat	
	emissions and economic mitigation			consumption due to a beef tax in	
	potentials at different CO ₂ prices	183		the OECD countries, and the	
5.7	Coal mining: breakeven costs and			greenhouse gas (GHG) mitigation	
	emission reductions for selected			expressed in GWP calculated over	
	technologies	184		100 years	216
5.8	Natural gas: projected baseline		6.1	Regional climate change impacts	
	emissions and economic mitigation			as a percentage of GDP	
	potentials at different CO ₂ prices	184		corresponding to a temperature	
5.9	Natural gas: breakeven costs and			increase of 2.5°C	226
	emission reductions for selected		6.2	Climate change impacts in	
	natural gas mitigation technologies	185		different world regions under a	

List of tables xi

CAMBRIDGE

Cambridge University Press 978-0-521-13856-7 - Smart Solutions to Climate Change: Comparing Costs and Benefits Edited by Bjorn Lomborg Frontmatter More information

xii List of tables

	2.5°C increase in global		6.20
	temperature above preindustrial		
	levels	227	6.21
6.3	Adaptation: possible criteria for		
	classification	228	6.22
6.4	BCRs of adaptation in four		
	scenarios (non-cooperative		
	scenario with mitigation and		6.23
	adaptation)	237	
6.5	Strategic complementarity		6A1.
	between mitigation and adaptation		6A1.
	(2035–2100)	241	
6.6	Timing of mitigation and		
	adaptation in the cooperative		
	scenario (2035-2100)	241	6A1.
6.7	Damage reduction due to different		
	strategies (2050-2100)	241	
6.8	BCR of adaptation and of joint		
	mitigation and adaptation	242	6A1.4
6.9	Sensitivity analysis: BCR of		
	mitigation and adaptation in the		
	cooperative scenario	242	
6.10	Expenditure composition of the		6A2.
	adaptation mix	242	6A3.
6.11	BCR of the adaptation strategy		
	mix in the cooperative scenario	242	
6.12	Mitigation and adaptation in the		7.1
	OECD and non-OECD regions in		
	the cooperative scenario	245	7.2
6.13	Sensitivity analysis: BCR of		7.3
	adaptation and of joint mitigation		
	and adaptation in the cooperative		7.4
	scenario – OECD regions	246	7.5
6.14	Sensitivity analysis: BCR of		7.6
	adaptation and of joint mitigation		7.7
	and adaptation in the cooperative		7.8
	scenario – non-OECD regions	246	
6.15	Marginal contribution of specific		7.9
	policy-driven strategies	246	
6.16	Impacts analyzed with the ICES		7.1.1
	model	249	
6.17	Regional and sectoral		
	disaggregation of the ICES model	249	
6.18	BCR of policy-driven adaptation in		7.1.2
	the presence of market-driven		
	adaptation	254	
6.19	Most cost-effective strategies	_ <i>2</i> .	7.1.3
	against diarrheal disease	256	

6.20	Most cost-effective strategies	
	against malaria in SSA	256
6.21	Most cost-effective strategies	
	against malnutrition	256
6.22	PV of benefits and costs and IRR	
	under three ENSO frequency	
	scenarios	257
6.23	Share of damage reduction in the	
	optimal policy mix	259
6A1.1	Different adaptation strategies	264
6A1.2	Adaptation costs in response to a	
	doubling of CO ₂ concentration in	
	absolute values and as percentage	
	of GDP	265
6A1.3	Effectiveness of adaptation	
	(1 = 100% damage reduction)	
	against doubling of CO ₂	
	concentration	266
6A1.4	Total climate change costs	
	(residual damages and adaptation	
	cost) for a doubling of	
	CO_2 concentration	267
6A2.1	Climate change impacts (2000–50)	268
6A3.1	Benefits and costs of adaptation	
	without mitigation (non-	
	cooperative)	272
7.1	The IPCC B2 scenario	
	(1990–2100)	297
7.2	Carbon tax equivalents	309
7.3	Projected changes in physical	207
	output of intensive sectors (2020)	314
7.4	Early return to R&D	324
75	Mid-return to R&D	325
7.6	Late return to R&D	325
77	Cumulative emissions comparisons	326
7.8	Cumulative emissions: a policy	020
1.0	comparison	326
79	Technology-led vs "brute force"	520
1.5	BCRs	329
711	Increase in climate policy costs	527
/.1.1	without an R&D program aimed at	
	breakthrough in low-carbon	
	technologies	347
712	Technological parameters for	572
1.1.2	traditional coal and IGCC_CCS	
	nower plants	3/15
713	CBA of $R\&D$ in a CCS	575
1.1.5	technologies program	3/6
	weiniologies program	540

Cambridge University Press
978-0-521-13856-7 - Smart Solutions to Climate Change: Comparing Costs and Benefits
Edited by Bjorn Lomborg
Frontmatter
More information

				List of tables	xiii
7.1.4	BCRs for R&D in a CCS	346	8.2	PV of total global benefits and costs of TT in 100 years (the	
7.2.1	Implications for BCRs	358		second measurement)	366
8.1	PV of total global benefits and costs of TT in 100 years (the first		8.3	PV of total global benefits and costs of TT in 100 years (the third	
	measurement)	366		measurement)	366

Contributors

Experts

Jagdish N. Bhagwati is University Professor at Columbia University and Senior Fellow in International Economics at the Council on Foreign Relations. He has been Economic Policy Adviser to Arthur Dunkel, Director General of GATT (1991-3), Special Adviser to the United Nations on Globalization, and External Adviser to the WTO. He has served on the Expert Group appointed by the Director General of the WTO on the Future of the WTO and the Advisory Committee to Secretary General Kofi Annan on the NEPAD process in Africa, and was also a member of the Eminent Persons Group under the chairmanship of President Fernando Henrique Cardoso on the future of UNCTAD. Five volumes of his scientific writings and two of his public policy essays have been published by MIT Press. The recipient of six Festschrifts in his honor, he has also received several prizes and honorary degrees, including awards from the governments of India (Padma Vibhushan) and Japan (Order of the Rising Sun, Gold and Silver Star). Professor Bhagwati's latest book is In Defense of Globalization (2004).

Finn E. Kydland is the Henley Professor of Economics at the University of California, Santa Barbara, and Director of The Laboratory for Aggregate Economics and Finance. Professor Kydland was awarded the 2004 Nobel Prize in Economics jointly with Edward C. Prescott of Arizona State University, "for their contribution to dynamic macroeconomics: the time consistency of economic policy and the driving forces behind business cycles." Their analysis of economic policy and the driving forces behind business cycles transformed economic research and greatly influenced the practice of economic policy in general, and monetary policy

in particular. In two joint papers, in 1977 and 1982, Kydland and Prescott offered new approaches to the analysis of macroeconomic developments. Kydland joined the UC Santa Barbara faculty on July 1, 2004. He previously taught at Carnegie Mellon University, where he earned his PhD. He is also an Adjunct Professor at NHH, Norway, and consults as a Research Associate at the Federal Reserve Bank of Dallas

Thomas C. Schelling is Distinguished University Professor, Emeritus at the University of Maryland. For twenty years he was the Lucius N. Littauer Professor of Political Economy at the John F. Kennedy School of Government. Schelling was awarded the Nobel Memorial Prize in Economic Sciences jointly with Robert Aumann in 2005 for "having enhanced our understanding of conflict and cooperation through game-theory analysis." He has been elected to the National Academy of Sciences, the Institute of Medicine, and the American Academy of Arts and Sciences. In 1991, he was President of the American Economic Association, of which he is a distinguished fellow. He was the recipient of the Frank E. Seidman Distinguished Award in Political Economy and the National Academy of Sciences award for Behavioral Research Relevant to the Prevention of Nuclear War. He served in the Economic Cooperation Administration in Europe, and has held positions in the White House and Executive Office of the President, Yale University, the RAND Corporation and the Department of Economics and Center for International Affairs at Harvard University. He has published on military strategy and arms control, energy and environmental policy, climate change, nuclear proliferation, terrorism, organized crime, foreign aid and international trade, conflict and bargaining theory, racial segregation and integration, the military draft, health policy, tobacco

and drugs policy, and ethical issues in public policy and in business.

Vernon L. Smith was awarded the Nobel Prize in Economic Sciences in 2002 for his groundbreaking work in experimental economics. Smith has joint appointments with the Argyros School of Business and Economics, and the School of Law at Chapman University, and he is part of a team that will create and run the new Economic Science Institute at Chapman. Smith has authored or coauthored more than 250 articles and books on capital theory, finance, natural resource economics, and experimental economics. He serves or has served on the board of editors of the American Economic Review, The Cato Journal, the Journal of Economic Behavior and Organization, the Journal of Risk and Uncertainty, Science, Economic Theory, Economic Design, Games and Economic Behavior, and the Journal of Economic Methodology. Smith is a distinguished fellow of the American Economic Association, an Andersen Consulting Professor of the Year, and the 1995 Adam Smith Award recipient conferred by the Association for Private Enterprise Education. He was elected a member of the National Academy of Sciences in 1995, and received CalTech's Distinguished Alumni Award in 1996. He has served as a consultant on the privatization of electric power in Australia and New Zealand and participated in numerous private and public discussions of energy deregulation in the USA. In 1997 he served as a Blue Ribbon Panel Member, National Electric Reliability Council. Smith completed his undergraduate degree in electrical engineering at CalTech, his master's degree in economics at the University of Kansas, and his PhD in economics at Harvard University.

Nancy L. Stokey is the Frederick Henry Prince Distinguished Service Professor of Economics at the University of Chicago. She earned her BA in economics from the University of Pennsylvania in 1972 and her PhD from Harvard University in 1978. Stokey has published significant research in the areas of economic growth and development, as well as papers on economic history ("A Quantitative Model of the British Industrial Revolution: 1780– 1850," 2001) and economic theory ("Dynamic ProList of contributors xv

gramming with Homogeneous Functions," 1998, co-authored with Fernando Alvarez). She is the codeveloper, with Paul Milgrom, of the no-trade theorem, a counter-intuitive proposition in financial economics, and offered the first rigorous proof of the Coase conjecture on durable goods pricing by a monopolist. She co-authored, with Nobel Prize laureates Robert Lucas, Jr. and Edward Prescott, a book on recursive methods in economic dynamics that is widely used by research economists and graduate students. Stokey is a member of the National Academy of Sciences and of the American Academy of Arts and Sciences, and she was a vice-president of the American Economic Association between 1996 and 1997. She has served as co-editor of Econometrica and the Journal of Political Economy.

Chapter Authors

Robert E. Baron is a senior consultant at Charles River Associates International. He has thirty years' experience in the energy industry, related to natural gas, petroleum, and electric utilities. Previously he was vice-president at ICF Consulting, a principal at DRI/McGraw-Hill, a manager at British Petroleum, and a research scientist at the MIT Energy Laboratory.

J. Eric Bickel is an assistant professor in the Graduate Program in Operations Research and Industrial Engineering at The University of Texas at Austin and a fellow in the Center for International Energy and Environmental Policy.

Francesco Bosello is a researcher at the Department of Economics, Business and Statistics, University of Milan, Italy, and senior researcher at the Fondazione Eni Enrico Mattei in Milan. He graduated in economics at the University Ca'Foscari of Venice, then achieved the title of Master of Science in Economics from University College, University of London (UK) and a PhD in Economics from the University of Venice. Previously he has been Visiting Scientist at the International Center for Theoretical Physics Abdus Salam in Trieste and Research Assistant at the University of Venice.

xvi List of contributors

Carlo Carraro is Professor of Environmental Economics at the University of Venice. He holds a PhD from Princeton University and has been Vice-Provost for Research Management and Policy of the University of Venice (2000–6) and Chairman of the Department of Economics (2006–8). Carraro is Director of the Sustainable Development Programme of the Fondazione Eni Enrico Mattei and Director of the Climate Impacts and Policy Division of the Euro Mediterranean Centre for Climate Change (CMCC).

Enrica De Cian is a junior researcher at the Fondazione Eni Enrico Mattei in Venice. In 2008 she graduated in Economics and Organization at the School of Advanced Studies in Venice. In 2006–7, she was Visiting Student at the MIT Joint Program on the Science and Policy of Global Change, at MIT. Her main research interests are technological change and the environment; mitigation and adaptation policies; and climate coalitions.

Isabel Galiana is a PhD candidate in the Department of Economics at McGill University, Montreal, specializing in modeling of climate change policy and international economics.

Christopher Green is a professor of economics in the Department of Economics at McGill University. His main teaching and research fields are industrial organization; public policies toward business; and environmental economics, in particular the economics of climate change.

Claudia Kemfert is Head of the Department of Energy, Transportation, Environment at the German Institute of Economic Research (DIW, Berlin), and Professor of Energy Economics and Sustainability at the Hertie School of Governance (HSoG). From 2004 to 2009, she was Professor of Environmental Economics at Humboldt-University Berlin. She is an expert in the areas of energy and climate economics.

Lee Lane is a resident fellow at AEI and codirector of AEI's geoengineering (GE) project. Lane has been a consultant to CRA International, and Executive Director of the Climate Policy Center. **W. David Montgomery** is Vice-President at Charles River Associates International. He is an internationally recognized expert on economic issues associated with climate change policy, and his work on these topics has been published frequently in peer-reviewed journals. He was a principal lead author of the Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 1995), Working Group III, and he has authored a number of peer-reviewed publications on climate policy over the past twenty years.

Wolf-Peter Schill is Research Associate at the Department of Energy, Transportation, Environment at the German Institute of Economic Research (DIW, Berlin). His fields of interest are economics of climate change, renewable energy, and electricity markets.

Brent Sohngen is Professor at The Ohio State University's Department of Agricultural, Environmental, and Development Economics, and University Fellow at Resources for the Future. Professor Sohngen develops economic models of land-use and land-cover change for climate policy analysis, and he studies the economics of non-point-source pollution control.

Richard S.J. Tol is a research professor at the Economic and Social Research Institute (Dublin) and the Professor of the Economics of Climate Change at the Free University of Amsterdam. An economist and statistician, his work focuses on impacts of climate change, international climate policy, tourism, and land and water use. He is ranked among the 200 best economists in the world. His recent publications include *Environmental Crisis: Science and Policy* (2007) and *Economic Analysis of Land Use in Global Climate Change* (2008).

Sugandha D. Tuladhar is an associate principal at Charles River Associates International. He specializes in computable general equilibrium (CGE) model development and its application. As a general equilibrium modeler with extensive econometric and programming skills, Tuladhar's work focuses on the global impact of environmental and climate policy changes.

List of contributors xvii

Zili Yang is Professor of Economics at the State University of New York at Binghamton. His focus is on resource and environmental economics, energy economics, and public economics.

Perspective Paper Authors

David Anthoff is an environmental economist working on climate change. He is a postdoctoral associate of the Economic and Social Research Institute, Dublin, and a freelance consultant on climate change issues. He holds a PhD in Economics from Hamburg University and the International Max Planck Research School on Earth System Modelling, a MSc in Environmental Change and Management from the University of Oxford and a MPhil in Philosophy from LMU, Munich. In the autumn of 2008, he was a visiting research fellow at the Smith School of Enterprise and the Environment, University of Oxford.

Valentina Bosetti holds a PhD in Computational Mathematics and Operation Research from the Università Statale of Milan and a Masters Degree in Environmental and Resources Economics from University College, University of London. At FEEM since 2003, she works as a modeler for the Sustainable Development Program, leading the Climate Change topic and coordinating a research group on numerical analysis of carbon mitigation options and policies. She has also collaborated with a number of other institutes such as the Euro-Mediterranean Center on Climate Change, the NOAA, and Italian Universities. Her main research interest is socio-economic modeling of climate change, with particular emphasis on innovation, uncertainty, and irreversibility.

Samuel Fankhauser is a principal fellow at the Grantham Research Institute on Climate Change and the Environment at the London School of Economics He also serves as Chief Economist for Globe International, the international legislators' forum, and is a member of the Committee on Climate Change, an independent public body that advises the UK government on its carbon targets. Dr. Fankhauser served on the 1995, 2001, and 2007

assessments of the Intergovernmental Panel on Climate Change (IPCC).

Sabine Fuss is a research scholar at the Forestry Program of the International Institute of Systems Analysis (IIASA) in Laxenburg, Austria.

Andrew P. Grieshop is a postdoctoral research fellow at the Institute for Resources, Environment, and Sustainability at the University of British Columbia, where he works at the intersection of energy consumption, atmospheric sciences, and public policy, focusing on issues in developing countries. His doctoral research, completed as part of the Center for Atmospheric Particle Studies at Carnegie Mellon University, examined the properties and atmospheric evolution of carbonaceous aerosols.

Fredrik Hedenus is a researcher at the Department of Physical Resource Theory at Chalmers University of Technology. His research interests include greenhouse gas (GHG) emissions from food, energy system modelling, energy security, and technological change.

Daniel J.A. Johansson is a postdoctoral student at the Division of Physical Resource Theory, Department of Energy and Environment at Chalmers University of Technology, Gothenburg. Johansson's main research interests are related to energy and climate change economics and policy.

Frank Jotzo is Research Fellow at the College of Asia and the Pacific, Australian National University, and Deputy Director of the ANU Climate Change Institute. He specializes in the economics and policy of climate change. He has worked and published on these topics and other aspects of international and development economics since 1998, and has advised several governments on climate policy.

Milind Kandlikar is an associate professor at the Liu Institute for Global Issues, University of British Columbia, Vancouver, Canada. His work focuses on the intersection of technology innovation, human development, and the global

xviii List of contributors

environment. He has published extensively on the science and policy of climate change.

Onno Kuik is a researcher at the Institute for Environmental Studies, Vrije Universiteit, Amsterdam. He has worked for the past twenty years on the economic analysis of environmental policy. He received the *Energy Journal*'s 2003 Best Paper Award for the paper "Trade Liberalization and Carbon Leakage," co-authored by Reyer Gerlagh.

Gregory Nemet is an assistant professor at the University of Wisconsin in the La Follette School of Public Affairs and the Nelson Institute for Environmental Studies. He is also a member of the University's Energy Sources and Policy Cluster and a senior fellow at the University's Center for World Affairs and the Global Economy. His research and teaching focus on improving understanding of the environmental, social, economic, and technical dynamics of the global energy system. A central focus of his research involves empirical analysis of the processes of innovation and technological change.

Roger A. Pielke, Jr. is a professor in the Environmental Studies Program at University of Colorado and a Fellow of the Cooperative Institute for Research in Environmental Sciences. In 2006, he received the Eduard Brückner Prize for outstanding achievement in interdisciplinary climate research.

David Popp is Associate Professor of Public Administration in the Center for Policy Research of the Maxwell School at Syracuse University. He is also a research associate of the National Bureau for Economic Research (NBER). He is an economist with research interests in environmental policy and the economics of technological change. Much of his research focuses on the links between environmental policy and innovation. He is particularly interested in how environmental and energy policies shape the development of new technologies that may be relevant for combating climate change.

Conor C.O. Reynolds is a doctoral candidate at the Institute for Resources, Environment and Sustainability at the University of British Columbia. He conducts research on the climate and air-quality impacts of transportation. Reynolds' doctoral dissertation assesses strategies to reduce transportation emissions in rapidly industrializing countries, such as the use of alternative fuels.

Roberto Roson has been a visiting fellow at the Free University of Amsterdam, at the University of Warwick, and at S. Francisco Xavier University (Sucre, Bolivia). He is currently Associate Professor at Ca'Foscari University, Venice, where he teaches industrial organization, international and antitrust economics. He is currently collaborating with the Euro-Mediterranean Centre for Climate Change, IEFE–Bocconi University and the World Bank.

Anne E. Smith is Vice-President and Practice Leader of Climate & Sustainability at Charles River Associates International. She is an expert in environmental policy assessment and corporate compliance strategy planning and has made major analysis contributions to most major air quality policy issues. She has a PhD in economics from Stanford University.

Acknowledgments

This book presents research and findings from the Copenhagen Consensus on Climate project which was made possible by funding from the Danish government. I am grateful for the commitment of current and past staff members at the Copenhagen Consensus Center: Cecilie Olsen, Gabriela Garza de Linde, Henrik Meyer, Katja Johansen, Kristine Ohrt, Maria Jakobsen, Tommy Petersen, and Zenia Stampe. I would particularly like to thank the members of the project team for their exceptional dedication and enthusiasm: Anders Møller, Anita Overholt Nielsen, David Young, Kasper Thede Anderskov, Maja Makwarth, Sasha Larsen Beckmann, Ulrik Larsen, and Zsuzsa Horvath. And I would especially like to express my sincere appreciation to the authors of the outstanding research in this volume, and to the remarkable members of the Copenhagen Consensus Expert Panel.

Abbreviations and acronyms

ABC	Atmospheric Brown Clouds	EMF	Energy Modeling Forum
ABI	Association of British Insurers	ENSO	El Niño-southern oscillation
AC	air capture	EPA	Environmental Protection Agency
AC	average cost		(USA)
ACEI	Autonomous Carbon Efficiency	EPO	European Patent Office
	Improvement	EST	environmentally sound technologies
AEEI	Autonomous Energy Efficiency	ETS	emission trading scheme
	Improvement	ETS	Emission Trading System
AETG	advanced energy technology gap	FDI	foreign direct investment
APP	Asia Pacific Partnership	FEEM	Fondazione Eni Enrico Mattei
B/C	benefit-cost	FSU	former Soviet Union
BAU	business-as-usual	FUND	Climate Framework for Uncertainty,
BCA	benefit-cost analysis		Negotiation, and Distribution
BCR	benefit-cost ratio	G4M	Global Forest Model
CBA	cost-benefit analysis	GAINS	Greenhouse Gas and Air Pollution
CCN	cloud condensation nucleae		Interactions and Synergies
CCS	carbon capture and storage	GCC	global climate change
CCSP	Climate Change Science Program	GCM	general circulation model
CDM	clean development mechanism	GCP	Global Carbon Project
CE	climate engineering	GDP	gross domestic product
CES	constant elasticity of substitution	GE	geoengineering
CFC	chlorofluorocarbon	Gg	giga-gram
CGE	computable general equilibrium	GHG	greenhouse gas
CIO	carbon intensity of output	GLOBIOM	Global Biomass Optimization
CIR ³ D	carbon intensity-reducing return to		Model
	R&D investment	GtC	gigatons of carbon
CIS	Commonwealth of Independent	GTP	Global Temperature Potential
	States	GWe	giga-watt electric
CNG	compressed natural gas	GWP	global warming potential
COP	Conference of Parties	GWP	gross world product
CRP	Conservation Reserve Program	HDDV	heavy-duty diesel vehicles
	(USA)	HFC	hydrofluorocarbon
CV	current value	IA	impact assessment
DALY	disability adjusted life year	IA	integrated assessment
DICE	Dynamic Integrated model of	IAM	integrated assessment model
	Climate and the Economy	ICES	Intertemporal Computable
EDF	Environmental Defense Fund		Equilibrium System
EI	energy intensity of output	IEA	international environmental
EJ	exajoules		agreement

xх

List of abbreviations and acronyms xxi

		0111	
IEA WEO	International Energy Agency World	OHI	other high-income countries
	Energy Outlook	OLS	ordinary least squares
IFR	integral fast reactor	PDF	probability density function
IGCC-CCS	integrated coal gasification	PFC	perfluorocarbons
	combined cycle power plant	PM	particulate matter
IIASA	International Institute for Applied	PPP	purchasing power parity
	Systems Analysis	ppb	parts per billion
IPCC	Intergovernmental Panel on Climate	ppm	parts per million
	Change	ppmv	parts per million by volume
IRR	internal interest rate	PV	present value
ISM	Indian summer monsoon	QALY	quality of life
ITC	induced technological change	R&D	research and development
LBD	learning-by-doing	RCIO	rate of decline in the carbon
LBR	learning-by-researching		intensity of output
LDC	least developed country	REDD	Reducing Emissions from
LFG	landfill gas		Deforestation and Forest
LLF	long-lived fluorinated gases		Degradation (avoided deforestation)
LNG	liquefied natural gas	RICE	Regional Dynamic Integrated model
LPG	liquefied petroleum gas		of Climate and the Economy
MAC	marginal abatement cost	SCC	social costs of carbon
MC	marginal costs	SF_6	sulfur hexafluoride
MEF	Major Economies Forum	SLF	short-lived fluorinated gases
MER	market exchange rates	SPM	Summary for Policy Makers (IPCC)
MFI	micro-finance institution	SRES	Special Report on Emission
MMV	measurement, monitoring, and		Scenarios
	verification	SRM	solar radiation management
МТ	million ton	SSA	sub-Saharan Africa
MTC	metric ton of carbon	SYR	Synthesis Report (IPCC)
NAPA	National Adaptation Programmes of	TFP	total factor productivity
111111	Action	То	teragram
NAS	National Academy of Sciences	THC	Thermohaline Circulation
NC	No Controls	TOA	ton of the atmosphere
NCAR	The National Center for		technology transfer
NCAR	Atmospheric Pesearch		terowatt
NGO	non governmental organization	LINECCC	United Nations Framework
NUC	non-governmental organization	UNITECE	Convention on Climate Change
NIS NDV	newly independent states	1117	vitrovialet
NP V NDTEE	National Davadtable on the		
NKIEE	National Roundtable on the	VOC	volatile organic compounds
	Environment and the Economy	VOI	value of information
0.014	(Canada)	VSL	value of a statistical life
O&M	operation and maintenance	WHO	World Health Organization
OC .	Optimal Controls	WM	Waxman–Markey (bill)
OC	organic carbon	WTAC	willingness to accept compensation
ODA	overseas development aid	WTP	willingness-to-pay
OECD	Organization for Economic	YLD	years lost due to disability
	Cooperation and Development	YLL	years of life lost