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1 Introduction

The numerical treatment of ordinary differential equations has continued

to be a lively area of numerical analysis for more than a century, with

interesting applications in various fields and rich theory. There are three

main developments in the design of numerical techniques and in the

analysis of the algorithms:

• Non-stiff differential equations. In the 19th century (Adams, Bash-

forth, and later Runge, Heun and Kutta), numerical integrators have

been designed that are efficient (high order) and easy to apply (ex-

plicit) in practical situations.

• Stiff differential equations. In the middle of the 20th century one

became aware that earlier developed methods are impractical for a

certain class of differential equations (stiff problems) due to stability

restrictions. New integrators (typically implicit) were needed as well

as new theories for a better understanding of the algorithms.

• Geometric numerical integration. In long-time simulations of Hamil-

tonian systems (molecular dynamics, astronomy) neither classical ex-

plicit methods nor implicit integrators for stiff problems give satisfac-

tory results. In the last few decades, special numerical methods have

been designed that preserve the geometric structure of the exact flow

and thus have an improved long-time behaviour.
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2 E. Hairer & C. Lubich

The basic developments (algorithmic and theoretical) of these epochs

are documented in the monographs [HNW93], [HW96], and [HLW06].

Within geometric numerical integration we can also distinguish between

non-stiff and stiff situations. Since here the main emphasis is on con-

servative Hamiltonian systems, the term “stiff” has to be interpreted as

“highly oscillatory”.

The present survey is concerned with geometric numerical integra-

tion with emphasis on theoretical insight for the long-time behaviour of

numerical solutions. There are several degrees of difficulty:

• Non-stiff Hamiltonian systems — backward error analysis. The

main theoretical tool for a better understanding of the long-time be-

haviour of numerical methods for structured problems is backward

error analysis (Sect. 2). Rigorous statements over exponentially long

times have been obtained in [BG94, HL97, Rei99] for symplectic in-

tegrators. Unfortunately, the analysis is restricted to the non-stiff

situation, and does not provide any information for problems with

high oscillations.

• Highly oscillatory problems — modulated Fourier expansion. The

main part of this survey treats Hamiltonian systems of the form

q̈ + Ω2q = −∇U(q), (1.1)

where Ω is a diagonal matrix with real entries between 0 and a large

ω, and U(q) is a smooth potential function. The additional difficulty

is the presence of two time scales, and the crucial role of harmonic

actions in the long-time analysis. Basic work for the analytic solution

is in [BGG87]. Section 3 presents the technique of modulated Fourier

expansions which permits to prove simultaneously the conservation of

energy and actions for the analytic and the numerical solution (where

the product of the time step size and ω is of size one or larger). This

is developed in [HL01, CHL03] for one high frequency and in [CHL05]

for several high frequencies.

• Non-linear wave equations. An extension to infinite dimension with

arbitrarily large frequencies permits to treat the long-time behaviour

of one-dimensional semi-linear wave equations. Long-time conser-

vation of harmonic actions along the analytic solution is studied in

[Bou96, Bam03]. The technique of modulated Fourier expansion yields

new insight into the long-time behaviour of the analytic solution

[CHL08b], of pseudo-spectral semi-discretizations [HL08], and of full

discretizations [CHL08a]. This is discussed in Sect. 4.
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Oscillations over long times in numerical Hamiltonian systems 3

In Sect. 5, an interesting analogy between highly oscillatory differen-

tial equations and linear multistep methods for non-stiff problems q̈ =

−∇U(q) is established (see [HL04]). The inverse of the step size plays

the role of ω, and the parasitic solutions of the multistep method corre-

spond to high oscillations in the solution of (1.1). The near conservation

of the harmonic actions thus yields the bounded-ness of the parasitic

solutions over long times, and permits to prove that special linear mul-

tistep methods are suitable for the long-time integration of Hamiltonian

systems (like those arising in the computation of planetary motion).

2 Backward error analysis

An important tool for a better understanding of the long-time behaviour

of numerical methods for ordinary differential equations is backward

error analysis. We present the main ideas, some important consequences,

and also its limitations in the case of highly oscillatory problems.

2.1 General idea

The principle applies to general ordinary differential equations ẏ = f(y)

and to general (numerical) one-step methods yn+1 = Φh(yn ), such as

Runge–Kutta, Taylor series, composition and splitting methods. It con-

sists in searching for a modified differential equation

ż = fh(z) = f(z) + hf2(z) + h2f3(z) + · · · , z(0) = y0 , (2.1)

where the vector field is written as a formal series in powers of the step

size h, such that the numerical solution for the original problem is equal

(in the sense of formal power series) to the exact solution of the modified

differential equation (see Fig. 1).

③

✿

ẏ = f(y)

ż = fh(z)

z(0), z(h), z(2h), . . .
=

y0, y1, y2, y3, . . .

numerical
method

exact

solution

Fig. 1. Idea of backward error analysis

To obtain the coefficient functions fj (y), we note that we have the

relation z(t+h) = Φh

(
z(t)

)
for the (formal) solution of (2.1). Expanding
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4 E. Hairer & C. Lubich

both sides of this relation into a power series of h and comparing equal

powers of h, permits us to compute the functions fj (y) in a recursive

manner.

The importance of backward error analysis resides in the fact that for

differential equations with certain structures (Hamiltonian, reversible,

divergence-free, etc.) solved with suitable geometric integrators (sym-

plectic, symmetric, volume-preserving, etc.), the modified differential

equation has the same structure as the original problem. The study

of the modified differential equation then gives insight into the numer-

ical solution. The rest of this section is devoted to make these state-

ments more precise for the important special case of the Störmer–Verlet

(leapfrog) discretisation.

2.2 Störmer–Verlet discretisation

For ease of presentation we restrict our considerations to the special

Hamiltonian system

q̈ = f(q) with f(y) = −∇U(q), (2.2)

where U(q) is a smooth potential function. Its most obvious discretisa-

tion (augmented with an approximation to the velocity p = q̇) is

qn+1 − 2qn + qn−1 = h2f(qn )

qn+1 − qn−1 = 2h pn .
(2.3)

Due to pioneering work on higher order variants by Störmer, and due to

its importance in molecular dynamics simulations recognised by Verlet,

it is often called Störmer–Verlet method. In the literature on partial

differential equations it is known as the leapfrog discretisation.

Introducing pn+1/2 := (qn+1 − qn )/h as an intermediate slope, this

method can be written as

pn+1/2 = pn +
h

2
f(qn )

qn+1 = qn + h pn+1/2

pn+1 = pn+1/2 +
h

2
f(qn+1)

(2.4)

which is clearly recognised as a symmetric one-step method for (2.2). It

is a geometric integrator par excellence: the numerical flow (qn , pn ) �→

(qn+1 , pn+1) is symplectic when f(q) = −∇U(q), it is volume preserving

in the phase space, and it is time reversible (see [HLW03]). It is also
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Oscillations over long times in numerical Hamiltonian systems 5

the basic scheme for various extensions to higher order methods: com-

position and splitting methods, partitioned Runge–Kutta methods, and

symmetric multistep methods.

2.3 Formal backward error analysis

We search for a modified differential equation such that its solution(
q(t), p(t)

)
, which should not be confused with the solution of (2.2),

formally interpolates the numerical solution of (2.3), i.e.,

q(t + h) − 2q(t) + q(t − h) = h2f
(
q(t)

)

q(t + h) − q(t − h) = 2h p(t).
(2.5)

Expanding the left hand sides into Taylor series around h = 0, eliminat-

ing higher derivatives by successive differentiation, and expressing the

resulting differential equations in terms of q and p, yields

ṗ = f(q) +
h2

12

(
f ′′(q)(p, p) + f ′(q)f(q)

)
−

h4

720

(
f ′′′′(q)

(
p, p, p, p

)

+ 6 f ′′′(q)
(
f(q), p, p

)
+ 24 f ′′(q)

(
f ′(q)p, p

)
+ 3 f ′′(q)

(
f(q), f(q)

)

+ 6 f ′(q)f ′′(q)(p, p) + 6 f ′(q)f ′(q)f(q)
)

+ O(h6) (2.6)

q̇ = p −
h2

6
f ′(q)p +

h4

180

(
f ′′′(q)

(
p, p, p

)
+ 3 f ′′(q)

(
f(q), p

)

+ 6 f ′(q)f ′(q)p
)

+ O(h6).

Due to the symmetry of the method, the modified differential equation

becomes a series in even powers of h.

For the case of a Hamiltonian system (2.2), i.e., f(q) = −∇U(q), the

modified differential equation (2.6) is also Hamiltonian

ṗ = −∇qHh(p, q), q̇ = ∇pHh(p, q)

with modified Hamiltonian

Hh(p, q) =
1

2
‖p‖2 + U(q) +

h2

24

(
2U ′′(q)

(
p, p

)
− ‖U ′(q)‖2

)

−
h4

720

(
U (4)(q)

(
p, p, p, p

)
− 6U ′′′(q)

(
U ′(q), p, p

)
(2.7)

+ 3U ′′(q)
(
U ′(q), U ′(q)

)
− 12 ‖U ′′(q)p‖2

)
+ O(h6).

An important consequence of this observation is the following: since

the numerical solution of the Störmer–Verlet discretisation is (at least
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6 E. Hairer & C. Lubich

formally) equal to the exact solution of the modified differential equa-

tion, we have that Hh(pn , qn ) = const . As long as the numerical so-

lution stays in a compact set, this implies that the energy H(p, q) =
1
2 ‖p‖

2+U(q) remains close to a constant, i.e., H(pn , qn ) = const +O(h2)

without any drift.

The next section shows how this statement can be made rigorous.

2.4 Rigorous backward error analysis

For a rigorous analysis, the modified differential equation constructed in

the previous sections has to be truncated suitably:

ż = fh,N (z) = f(z) + hf2(z) + · · · + hN −1fN (z), z(0) = y0 . (2.8)

Obviously, equality does not hold any more in Fig. 1 and an error of size

O(hN +1) is introduced. More precisely, if yn+1 = Φh(yn ) denotes the

one-step method, and ϕN,t(y) the flow of the truncated differential equa-

tion (2.8), we have ‖Φh(y0)−ϕN,h(y0‖ ≤ CN hN +1 for arbitrary N . The

freedom of choosing the truncation index N can be used to minimise this

estimate. For analytic f(y) and for standard numerical integrators (such

as partitioned Runge–Kutta methods including the Störmer–Verlet dis-

cretisation), the choice N ∼ h−1 yields an estimate

‖Φh(y0) − ϕN,h(y0‖ ≤ hγM e−α/ωh , (2.9)

where α and γ are constants that only depend on the numerical method,

M is an upper bound of f(y) on a disc of radius 2R around the initial

value y0 , and ω = M/R is related to a Lipschitz constant of f(y). A

detailed proof can be found in [HLW06, Chap. IX].

Notice that (2.9) yields an estimate for one step only (local error).

To get estimates for the global error and information on the long-time

behaviour, knowledge on the propagation of perturbations is needed.

• Conservation of energy. In the case of a symplectic method applied to

a Hamiltonian system, the modified equation is Hamiltonian (see Sec-

tion 2.3). The truncated modified Hamiltonian HN,h(p, q) is exactly

conserved along the solution of (2.8). Therefore, local deviations in

HN,h(pn , qn ) are just summed up, and one obtains from (2.9) that this

modified Hamiltonian is conserved along the numerical solution up to

exponentially small errors O(e−γ/2ωh) on exponentially long time in-

tervals 0 ≤ t ≤ O(eγ/2ωh). This implies the absence of any drift in

the numerical Hamiltonian H(pn , qn ).
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Oscillations over long times in numerical Hamiltonian systems 7

• Integrable Hamiltonian systems. Symplectic integrators applied to a

nearly integrable Hamiltonian system give raise to a modified equation

that is a perturbed Hamiltonian system. The celebrated KAM theory

can be used get insight into the long-time behaviour of numerical

integrators, e.g., linear growth of the global error.

• Chaotic systems. In the presence of positive Lyapunov exponents, the

numerical solution remains close to the exact solution of the truncated

modified equation only on time intervals of length O(h−1). Energy is

well conserved by symplectic integrators also in this situation.

2.5 Limitation in the presence of high oscillations

The estimate (2.9) does not give any useful information if the product

ωh is of size one or larger. Recall that ω is a kind of Lipschitz constant of

the vector field f(y) which, in the case of a stable Hamiltonian system,

can be interpreted as the highest frequency in the solution. This means

that for highly oscillatory differential equations the step size is restricted

to unrealistic small values.

From the example of the harmonic oscillator H(p, q) = 1
2 (p2 + ω2q2)

it can be seen that the estimate (2.9) cannot qualitatively be improved.

In fact, for all reasonable integrators, the scaled numerical solution

(ωqn , pn ) depends on the step size h only via the product ωh.

The aim of the next section is to present a theory that permits to

analyse the long-time behaviour of numerical time integrators in the

presence of high oscillations.

3 Modulated Fourier expansion

In this section we consider Hamiltonian systems

q̈ + Ω2q = g(q), g(q) = −∇U(q), (3.1)

where, for ease of presentation, Ω is a diagonal matrix and U(q) is a

smooth potential function. Typically, Ω will contain diagonal entries ω

with large modulus. We are interested in the long-time behaviour of

numerical solutions when ω times the step size h is not small, so that

classical backward error analysis cannot be applied.
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8 E. Hairer & C. Lubich

3.1 Modulated Fourier expansion of the analytic solution

We start with the situation, where Ω contains only diagonal entries

which are either 0 or ω, and we split the components of q accordingly,

i.e., q = (q0 , q1) and Ω = diag (0, ωI). Both, q0 and q1 are allowed to be

vectors. There are two time scales in the solution of equation (3.1):

• fast time ωt in oscillations of the form eiωt ;

• slow time t due to the zero eigenvalue and the non-linearity.

In the absence of the non-linearity g(q), the solution of (3.1) is a linear

combination of 1, t, and e±iωt . For the general case we make the ansatz

q(t) =
∑

k∈Z

zk (t) eikωt , (3.2)

where zk (t) are smooth functions with derivatives bounded uniformly

in ω. The function z0(t) is real-valued, and z−k (t) is the complex con-

jugate of zk (t). Inserting (3.2) into the differential equation (3.1), ex-

panding the non-linearity into a Taylor series around z0 , and comparing

coefficients of eikωt yields

(
z̈k

0 + 2ikωżk
0 − k2ω2zk

0

z̈k
1 + 2ikωżk

1 + (1 − k2)ω2zk
1

)
=

∑

m≥0

1

m!

∑

s(α)=k

g(m )(z0) zα , (3.3)

where α = (α1 , . . . , αm ) is a multi-index, s(α) =
∑m

j=1 αj , and

g(m )(z0) zα = g(m )(z0)
(
zα1 , . . . , zαm

)
. The second sum is over multi-

indices α = (α1 , . . . , αm ) with αj �= 0.

To obtain smooth functions zk
j (t) with derivatives bounded uniformly

for large ω, we separate the dominating term in the left-hand side of

(3.3), and eliminate higher derivatives by iteration. This gives a second

order differential equation for z0
0 , first order differential equations for

z1
1 and z−1

1 , and algebraic relations for all other variables. Under the

“bounded energy” assumption on the initial values

‖q̇(0)‖2 + ‖Ω q(0)‖2 ≤ E, (3.4)

it is possible to prove that the coefficient functions are bounded (on in-

tervals of size one) as follows: z0
0 (t) = O(1), z±1

1 (t) = O(ω−1), ż±1
1 (t) =

O(ω−2), and zk
j (t) = O(ω−|k |−2) for the remaining indices (j, k), see

[HLW06, Sect. XIII.5].

The time average of the potential U(q) along the analytic solution (3.2)

only depends on the smooth coefficient functions zk (t) and is (formally)
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given by (with z = (. . . , z−1 , z0 , z1 , z2 , . . .))

U(z) = U(z0) +
∑

m≥1

1

m!

∑

s(α)=0

U (m )(z0)zα . (3.5)

It is an interesting fact and crucial for the success of the expansion

(3.2) that the functions yk (t) = zk (t) eikωt are solution of the infinite

dimensional Hamiltonian system

ÿk + Ω2yk = −∇−k U(y), (3.6)

where ∇−k indicates the derivative with respect to the component “−k”

of the argument y. Its Hamiltonian

H(y, ẏ) =
1

2

∑

k∈Z

(
(ẏ−k )T ẏk + (y−k )T Ω2yk

)
+ U(y) (3.7)

is therefore a conserved quantity of the system (3.6), and hence also of

(3.3). Since q0(t) = z0
0 (t) + O(ω−3), q̇0(t) = ż0

0 (t) + O(ω−2), q1(t) =

z1
1 (t) eiωt +z−1

1 (t) e−iωt +O(ω−2) = y1
1 (t)+y−1

1 (t)+O(ω−2) and q̇1(t) =

iω
(
y1

1 (t) − y−1
1 (t)

)
+ O(ω−2) by the estimates for zk

j , the quantity (3.7)

is O(ω−1) close to the total energy of the system

H
(
q(t), q̇(t)

)
=

1

2

(
‖q̇(t)‖2 + ‖Ωq(t)‖2

)
+ U

(
q(t)

)
. (3.8)

The averaged potential U(y) is invariant under the one-parameter

group of transformations yk → eikτ yk . Therefore, Noether’s theorem

yields the additional conserved quantity

I(y, ẏ) = −iω
∑

k∈Z

k (y−k )T ẏk (3.9)

for the system (3.6). It is O(ω−1) close to the harmonic energy

I
(
q(t), q̇(t)

)
=

1

2

(
‖q̇1(t)‖

2 + ω2‖q1(t)‖
2
)

(3.10)

of the highly oscillatory part of the system.

The analysis of this section can be made rigorous by truncating the

arising series and by patching together estimates on short intervals to

get information on intervals of length ω−N (with arbitrary N). In this

way one can prove that the harmonic energy (3.10) remains constant up

to oscillations of size O(ω−1) on intervals of length ω−N , a result first

obtained by [BGG87].
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3.2 Exponential integrators

Since qn+1 − 2 cos(hΩ) qn + qn−1 = 0 is an exact discretisation of the

equation q̈ + Ω2q = 0, it is natural to consider the numerical scheme

qn+1 − 2 cos(hΩ) qn + qn−1 = h2Ψg(Φqn ) (3.11)

as discretisation of (3.1). Here, Ψ = ψ(hΩ) and Φ = φ(hΩ), where the

filter functions ψ(ξ) and φ(ξ) are even, real-valued functions satisfying

ψ(0) = φ(0) = 1. Special cases are the following:

(A) ψ(hΩ) = sinc2( 1
2 hΩ) φ(hΩ) = 1 [Gau61]

(B) ψ(hΩ) = sinc (hΩ) φ(hΩ) = 1 [Deu79]

(C) ψ(hΩ) = sinc2(hΩ) φ(hΩ) = sinc (hΩ) [GASS99]

where sinc (ξ) = sin ξ/ξ. It is also natural to complete formula (3.11)

with a derivative approximation pn given by

qn+1 − qn−1 = 2h sinc (hΩ) pn , (3.12)

because, for q(t) = exp(iΩt) q0 , the derivative p(t) = q̇(t) satisfies this

relation without error.

Written as a one-step method, we obtain

p̃n = pn +
h

2
Ψ1g(Φqn )

qn+1 = cos(hΩ) qn + Ω−1 sin(hΩ) p̃n

pn+1 = Ωsin(hΩ) qn + cos(hΩ) p̃n +
h

2
Ψ1g(Φqn+1),

(3.13)

where Ψ1 = ψ1(hΩ) with ψ1(ξ) = ψ(ξ)/ sinc (ξ). Notice that, for Ω → 0,

this integrator reduces to the Störmer–Verlet discretisation (2.4).

3.3 Modulated Fourier expansion of numerical solution

We are interested in the long-time behaviour of numerical approxima-

tions to the highly oscillatory Hamiltonian system (3.1). Our focus will

be on the near conservation of the total energy (3.8) and of the harmonic

energy (3.10) over long times.

In complete analogy to what we did in Sect. 3.1 for the analytic solu-

tion, we separate the fast and slow modes by the ansatz

qn = q̃(tn ) with q̃(t) =
∑

k∈Z

zk (t) eikωt , (3.14)

where tn = nh, and the coefficient functions are again assumed to be

smooth with derivatives bounded uniformly in ω. Inserting this ansatz
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