The titles below are available from booksellers, or from Cambridge University Press at www.cambridge.org/mathematics
London Mathematical Society Lecture Note Series: 367

Random Matrices: High Dimensional Phenomena

GORDON BLOWER

Lancaster University
To the memory of my father
Ronald Frederick Blower
Contents

Introduction

1 Metric measure spaces
 1.1 Weak convergence on compact metric spaces 4
 1.2 Invariant measure on a compact metric group 10
 1.3 Measures on non-compact Polish spaces 16
 1.4 The Brunn–Minkowski inequality 22
 1.5 Gaussian measures 25
 1.6 Surface area measure on the spheres 27
 1.7 Lipschitz functions and the Hausdorff metric 31
 1.8 Characteristic functions and Cauchy transforms 33

2 Lie groups and matrix ensembles
 2.1 The classical groups, their eigenvalues and norms 42
 2.2 Determinants and functional calculus 49
 2.3 Linear Lie groups 56
 2.4 Connections and curvature 63
 2.5 Generalized ensembles 66
 2.6 The Weyl integration formula 72
 2.7 Dyson’s circular ensembles 78
 2.8 Circular orthogonal ensemble 81
 2.9 Circular symplectic ensemble 83

3 Entropy and concentration of measure
 3.1 Relative entropy 84
 3.2 Concentration of measure 93
 3.3 Transportation 99
 3.4 Transportation inequalities 103
 3.5 Transportation inequalities for uniformly convex potentials 106
 3.6 Concentration of measure in matrix ensembles 109
Contents

3.7 Concentration for rectangular Gaussian matrices 114
3.8 Concentration on the sphere 123
3.9 Concentration for compact Lie groups 126

4 Free entropy and equilibrium 132
4.1 Logarithmic energy and equilibrium measure 132
4.2 Energy spaces on the disc 134
4.3 Free versus classical entropy on the spheres 142
4.4 Equilibrium measures for potentials on the real line 147
4.5 Equilibrium densities for convex potentials 154
4.6 The quartic model with positive leading term 159
4.7 Quartic models with negative leading term 164
4.8 Displacement convexity and relative free entropy 169
4.9 Toeplitz determinants 172

5 Convergence to equilibrium 177
5.1 Convergence to arclength 177
5.2 Convergence of ensembles 179
5.3 Mean field convergence 183
5.4 Almost sure weak convergence for uniformly convex potentials 189
5.5 Convergence for the singular numbers from the Wishart distribution 193

6 Gradient flows and functional inequalities 196
6.1 Variation of functionals and gradient flows 196
6.2 Logarithmic Sobolev inequalities 203
6.3 Logarithmic Sobolev inequalities for uniformly convex potentials 206
6.4 Fisher’s information and Shannon’s entropy 210
6.5 Free information and entropy 213
6.6 Free logarithmic Sobolev inequality 218
6.7 Logarithmic Sobolev and spectral gap inequalities 221
6.8 Inequalities for Gibbs measures on Riemannian manifolds 223

7 Young tableaux 227
7.1 Group representations 227
7.2 Young diagrams 229
7.3 The Vershik Ω distribution 237
7.4 Distribution of the longest increasing subsequence 243
7.5 Inclusion-exclusion principle 250
Contents

8 Random point fields and random matrices 253
 8.1 Determinantal random point fields 253
 8.2 Determinantal random point fields on the real line 261
 8.3 Determinantal random point fields and orthogonal polynomials 270
 8.4 De Branges’s spaces 274
 8.5 Limits of kernels 278

9 Integrable operators and differential equations 281
 9.1 Integrable operators and Hankel integral operators 281
 9.2 Hankel integral operators that commute with second order differential operators 289
 9.3 Spectral bulk and the sine kernel 293
 9.4 Soft edges and the Airy kernel 299
 9.5 Hard edges and the Bessel kernel 304
 9.6 The spectra of Hankel operators and rational approximation 310
 9.7 The Tracy–Widom distribution 315

10 Fluctuations and the Tracy–Widom distribution 321
 10.1 The Costin–Lebowitz central limit theorem 321
 10.2 Discrete Tracy–Widom systems 327
 10.3 The discrete Bessel kernel 328
 10.4 Plancherel measure on the partitions 334
 10.5 Fluctuations of the longest increasing subsequence 343
 10.6 Fluctuations of linear statistics over unitary ensembles 345

11 Limit groups and Gaussian measures 352
 11.1 Some inductive limit groups 352
 11.2 Hua–Pickrell measure on the infinite unitary group 357
 11.3 Gaussian Hilbert space 365
 11.4 Gaussian measures and fluctuations 369

12 Hermite polynomials 373
 12.1 Tensor products of Hilbert space 373
 12.2 Hermite polynomials and Mehler’s formula 375
 12.3 The Ornstein–Uhlenbeck semigroup 381
 12.4 Hermite polynomials in higher dimensions 384

13 From the Ornstein–Uhlenbeck process to the Burgers equation 392
 13.1 The Ornstein–Uhlenbeck process 392
Contents

13.2 The logarithmic Sobolev inequality for the Ornstein–Uhlenbeck generator 396
13.3 The matrix Ornstein–Uhlenbeck process 398
13.4 Solutions for matrix stochastic differential equations 401
13.5 The Burgers equation 408

14 Noncommutative probability spaces 411
14.1 Noncommutative probability spaces 411
14.2 Tracial probability spaces 414
14.3 The semicircular distribution 418

References 424
Index 433