
Introduction

The purpose of this book is to introduce readers to certain topics in
random matrix theory that specifically involve the phenomenon of con-
centration of measure in high dimension. Partly this work was moti-
vated by researches in the EC network Phenomena in High Dimension,
which applied results from functional analysis to problems in statistical
physics. Pisier described this as the transfer of technology, and this book
develops this philosophy by discussing applications to random matrix
theory of:

(i) optimal transportation theory;
(ii) logarithmic Sobolev inequalities;
(iii) exponential concentration inequalities;
(iv) Hankel operators.

Recently some approaches to functional inequalities have emerged that
make a unified treatment possible; in particular, optimal transporta-
tion links together seemingly disparate ideas about convergence to equi-
librium. Furthermore, optimal transportation connects familiar results
from the calculus of variations with the modern theory of diffusions and
gradient flows.

I hope that postgraduate students will find this book useful and, with
them in mind, have selected topics with potential for further develop-
ment. Prerequisites for this book are linear algebra, calculus, complex
analysis, Lebesgue integration, metric spaces and basic Hilbert space
theory. The book does not use stochastic calculus or the theory of inte-
grable systems, so as to widen the possible readership.

In their survey of random matrices and Banach spaces, Davidson
and Szarek present results on Gaussian random matrices and then indi-
cate that some of the results should extend to a wider context by the
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2 Gordon Blower

theory of concentration of measure [152]. This book follows this pro-
gramme in the context of generalized orthogonal ensembles and com-
pact Lie groups. While the Gaussian unitary ensemble and Wishart
ensembles have special properties, they provide a helpful model for
other cases. The book covers the main examples of the subject, such
as Gaussian random matrices, within the general context of invariant
ensembles.

The coverage of material is deliberately uneven, in that some topics
are treated more thoroughly than others and some results from other ar-
eas of analysis are recalled with minimal discussion. There are detailed
accounts of familiar topics such as the equilibrium measure of the quar-
tic potential, since these illustrate techniques that are useful in many
problems. The book develops classical and free probability in parallel,
in the hope that the analogy makes free probability more accessible.

The presentation is mainly rigorous, although some important proofs
are omitted. In order to understand the standard ensembles of random
matrix theory, the reader must have some knowledge of Lie groups, so
the book contains an abbreviated treatment which covers the main cases
that are required and emphasizes the classical compact linear groups.
Likewise, the presentations of Gaussian measures in Chapter 11 and the
Ornstein–Uhlenbeck process in Chapters 12 and 13 are self-contained,
but do not give a complete perspective on the theory. Similarly, the
treatment of free probability describes only one aspect of the topic.

Some of the results and proofs are new, although the lack of a specific
reference does not imply originality. In preparing the Sections 2.3, 2.4
and 2.6 on Lie groups, I have used unpublished notes from lectures given
by Brian Steer in Oxford between 1987 and 1991. Chapter 5 features re-
sults originally published by the author in [17] and [19], with technical
improvements due to ideas from Bolley’s thesis [29]. The material in
Chapter 6 on gradient flows was originally written for an instructional
lecture to postgraduate students attending the North British Func-
tional Analysis Seminar at Lancaster in 2006; likewise, Sections 8.1, 8.2,
and 7.3 are drawn from postgraduate lectures at Lancaster. Conversely,
Sections 7.2, 12.2 and 2.5 are based upon dissertations written by my
former students Katherine Peet, Stefan Olphert and James Groves. Sub-
stantial portions of Chapter 9 and Section 10.3 are taken from Andrew
McCafferty’s PhD thesis [113], which the author supervised.

In his authoritative guide to lakeland hillwalking [168], Wainwright
offers the general advice that one should keep moving, and he discusses
6 possible ascents of Scafell Pike, the optimal route depending upon the
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Introduction 3

starting point, the time available and so on. Similarly, the author pro-
poses 6 routes through the book, in addition to the obvious progression
1.1–14.3 which goes over the local maxima.

(1) Compact groups feature in the first half of the book, especially in
Sections 1.2, 2.3–2.9, 3.8, 3.9, 5.1, 7.4, 10.5.

(2) Generalized orthogonal ensembles feature in the middle of the book,
particularly in 1.5, 2.5, 3.4–3.7, 4.4–4.7, 6.3.

(3) Convergence to equilibrium distributions is the topic in 1.1, 3.4–3.9,
5.2–5.5, 10.6, 11.4.

(4) Free probability features in 4.3, 4.5, 4.8, 6.5, 6.6, 13.5, 14.1–3.
(5) Semicircular and similar special distributions appear in 4.4–4.7, 5.5,

7.3, 13.5, 14.3.
(6) Integrable operators appear in 9.1–9.7 and 11.2.

To summarize the contents of sections or the conclusions of examples,
we sometimes give lists of results or definitions with bullet points. These
should be considered in context, as they generally require elaboration.
There are exercises that the reader should be able to solve in a few hours.
There are also problems, which are generally very difficult and for which
the answer is unknown at the time of writing.

There are many important topics in random matrix theory that this
book does not cover, and for which we refer the reader elsewhere:

(i) the orthogonal polynomial technique and Riemann–Hilbert theory,
as considered by Deift in [56];

(ii) connections with analytic number theory as in [98, 50];
(iii) applications to von Neumann algebras, as developed by Voiculescu

and others [163, 164, 165, 166, 83, 84, 85, 77];
(iv) applications to physics as in [89];
(v) joint distributions of pairs of random matrices as in [76];
(vi) random growth models, and similar applications.

Jessica Churchman first suggested this topic as the subject for a book.
I am most grateful to Graham Jameson, François Bolley, Alex Belton,
Stefan Olphert, Martin Cook and especially James Groves for reading
sections and suggesting improvements. Finally, I express thanks to Roger
Astley of Cambridge University Press for bringing the project to fruition.
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Metric measure spaces

Abstract

The contents of this chapter are introductory and covered in many stan-
dard books on probability theory, but perhaps not all conveniently in one
place. In Section 1.1 we give a summary of results concerning probability
measures on compact metric spaces. Section 1.2 concerns the existence of
invariant measure on a compact metric group, which we later use to con-
struct random matrix ensembles. In Section 1.3, we resume the general
theory with a discussion of weak convergence of probability measures on
(noncompact) Polish spaces; the results here are technical and may be
omitted on a first reading. Section 1.4 contains the Brunn–Minkowski
inequality, which is our main technical tool for proving isoperimetric
and concentration inequalities in subsequent chapters. The fundamen-
tal example of Gaussian measure and the Gaussian orthogonal ensemble
appear in Section 1.5, then in Section 1.6 Gaussian measure is realised
as the limit of surface area measure on the spheres of high dimension. In
Section 1.7 we state results from the general theory of metric measure
spaces. Some of the proofs are deferred until later chapters, where they
emerge as important special cases of general results. A recurrent theme
of the chapter is weak convergence, as defined in Sections 1.1 and 1.3,
and which is used throughout the book. Section 1.8 shows how weak
convergence gives convergence for characteristic functions, cumulative
distribution functions and Cauchy transforms.

1.1 Weak convergence on compact metric spaces

Definition (Polish spaces). Let (Ω, d) be a metric space. Then (Ω, d)
is said to be complete if every Cauchy sequence converges; that is,
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Metric measure spaces 5

whenever a sequence (xn ) in Ω satisfies d(xn , xm ) → 0 as n,m → ∞,
there exists x ∈ Ω such that d(xn , x) → 0 as n → ∞.

A metric space (Ω, d) is said to be separable if there exists a sequence
(xn )∞n=1 in Ω such that for all ε > 0 and all x ∈ Ω, there exists xn such
that d(x, xn ) < ε. Such a sequence (xn ) is said to be dense.

A complete and separable metric space (Ω, d) is called a Polish space.
A map ϕ : (Ω1 , d1) → (Ω2 , d2) between metric spaces is an isometry if
d2(ϕ(x), ϕ(y)) = d1(x, y) for all x, y ∈ Ω.

Let Cb(Ω;R) be the space of bounded and continuous functions f :
Ω → R with the supremum norm ‖f‖∞ = sup{|f(x)| : x ∈ Ω}.

Definition (Compact metric spaces). A metric space is said to be (se-
quentially) compact if for any sequence (xn ) in Ω there exist x ∈ Ω and
a subsequence (xnk

) such that d(xnk
, x) → 0 as nk → ∞. The reader

may be familiar with the equivalent formulation in terms of open covers.
See [150].

Definition (Total boundedness). Let (Ω, d) be a metric space. An ε-net
is a finite subset S of Ω such that for all x ∈ Ω, there exists s ∈ Ω such
that d(x, s) < ε. If (Ω, d) has an ε-net for each ε > 0, then (Ω, d) is
totally bounded.

A metric space is compact if and only if it is complete and totally
bounded. See [150].

Proposition 1.1.1 Suppose that (K, d) is a compact metric space. Then
C(K;R) is a separable Banach space for the supremum norm.

Proof. Let (xn ) be a dense sequence in K and let fn : K → R be
the continuous function fn (x) = d(x, xn ). Then for any pair of distinct
points x, y ∈ K there exists n such that fn (x) �= fn (y). Now the algebra

A =
{

β(0)I +
∑

S :S⊂N

βS

∏
j :j∈S

fj (x) : βS ∈ Q for all S;βS = 0

for all but finitely many S; S finite
}

(1.1.1)

that is generated by the fn and the rationals is countable and dense in
C(K;R) by the Stone–Weierstrass theorem; hence C(K;R) is separable.
See [141]. �

Definition (Dual space). Let (E, ‖ . ‖) be a real Banach space. A
bounded linear functional is a map ϕ : E → R such that:
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6 Random Matrices: High Dimensional Phenomena

(i) ϕ(sx + ty) = sϕ(x) + tϕ(y) for all x, y ∈ E and s, t ∈ R;
(ii) ‖ϕ‖ = sup{|ϕ(x)| : x ∈ E; ‖x‖ ≤ 1} < ∞.

Let E∗ be the space of all bounded linear functionals. Let B = {x ∈
E : ‖x‖ ≤ 1}; then the product topology on [−1, 1]B is generated by the
open sets

{(xb)b∈B : |xbj
− ybj

| < εj ; j = 1, . . . , n} (1.1.2)

given by bj ∈ B, ybj
∈ [−1, 1] and ε > 0 for j = 1, . . . , n. Further,

B∗ = {φ ∈ E∗ : ‖φ‖ ≤ 1} may be identified with a closed subspace
of [−1, 1]B via the map φ �→ (φ(x))x∈B . This is the weak∗ or σ(E∗, E)
topology on B∗. See [63, 141].

Theorem 1.1.2 (Mazur). Let E be a separable Banach space. Then B∗

is a compact metric space for the weak∗ topology. Further, E is linearly
isometric to a closed linear subspace of C(B∗;R).

Proof. By Tychonov’s theorem [141], [−1, 1]B is a compact topological
space, and hence the closed subspace {(φ(x))x∈B : φ ∈ B∗} is also
compact; this is known as Alaoglu’s theorem. Now we show that B∗

has a metric that gives an equivalent topology; that is, gives the same
collection of open sets.

Let (xn )∞n=1 be a dense sequence in B and let

d(ψ,ϕ) =
∞∑

n=1

2−n |ϕ(xn ) − ψ(xn )| (ϕ,ψ ∈ B∗), (1.1.3)

so that d defines a metric on B∗. Now we check that d induces a compact
Hausdorff topology on B∗, which must coincide with the weak∗ topology.
Let (ϕj ) be a sequence in B∗. We extract a subsequence (ϕj1 (k))∞k=1 such
that ϕj1 (k)(x1) converges as j1(k) → ∞; from this we extract a further
subsequence (ϕj2 (k))∞k=1 such that ϕj2 (k)(x2) converges as j2(k) → ∞;
and so on. Generally we have jk : N → N strictly increasing and
jk (n) = jk−1(m) for some m ≥ n. Then we introduce the diagonal
subsequence (ϕjk (k)). By Alaoglu’s theorem there exists φ ∈ B∗ that
is a weak∗ cluster point of the diagonal subsequence, and one checks
that

d(φ, ϕjk (k)) =
∞∑

n=1

2−n |φ(xn ) − ϕjk (k)(xn )| → 0 (1.1.4)

as jk (k) → ∞ since ϕjk (k)(xn ) → φ(xn ) as jk (k) → ∞ for each n.
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Metric measure spaces 7

Let f ∈ E. Then f gives a function f̂ : B∗ → R by ϕ �→ ϕ(f) which
is continuous by the definition of the weak∗ topology. Further, by the
Hahn–Banach Theorem [141] we have

‖f̂‖∞ = sup{|ϕ(f)| : ϕ ∈ B∗} = ‖f‖, (1.1.5)

so f �→ f̂ is a linear isometry E → C(B∗;R). The range of a linear
isometry on a Banach space is complete and hence closed. �

Definition (Borel measures). Let (Ω, d) be a Polish space. A σ-algebra
A on Ω is a collection of subsets of Ω such that:

(σ1) Ω ∈ A;
(σ2) if A ∈ A, then Ω \ A ∈ A;
(σ3) if (An )∞n=1 satisfies An ∈ A for all n, then A =

⋃∞
n=1 An has

A ∈ A.

The sets A in a σ algebra A are called events.
The open subsets of Ω generate the Borel σ-algebra B(Ω) and Mb(Ω)

is the space of bounded Borel measures µ : B(Ω) → R such that

(i) ‖µ‖var = sup{
∑

j |µ(Ej )| : Ej ∈ B(Ω) mutually disjoint, j =
1, . . . , N} < ∞;

(ii) µ(
⋃∞

j=1 Ej ) =
∑∞

j=1 µ(Ej ) for all (Ej )∞j=1 mutually disjoint Ej ∈
B(Ω).

We write M+
b (Ω) for the subspace of µ ∈ Mb(Ω) such that µ(E) ≥ 0

for all E ∈ B(Ω) and Prob(Ω) for the subspace {µ ∈ M+
b (Ω) : µ(Ω) =

1} of probability measures. Further, we write M1(Ω) = {µ ∈ Mb(Ω) :
‖µ‖var ≤ 1}. An event is a Borel-measurable subset of Ω. See [88]. For
any Borel set A, IA denotes the indicator function of A which is one on
A and zero elsewhere, so µ(A) =

∫
Ω IAdµ.

A probability space (Ω,P) consists of a σ algebra A on Ω, and a
probability measure P : A → R.

Theorem 1.1.3 (Riesz representation theorem). Let (Ω, d) be a compact
metric space and ϕ : Cb(Ω;R) → R a bounded linear functional. Then
there exists a unique µ ∈ Mb(Ω) such that

(iii) ϕ(f) =
∫

f(x)µ(dx) for all f ∈ Cb(Ω;R).
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8 Random Matrices: High Dimensional Phenomena

Conversely, each µ ∈ Mb(Ω) defines a bounded linear functional ϕ via
(iii) such that ‖ϕ‖ = ‖µ‖var . Further, µ is a probability measure if and
only if

(iv) ‖ϕ‖ = 1 = ϕ(I).

Proof. See [88]. �

Definition (Weak convergence). Let (µj )∞j=1 be a sequence in Mb(Ω),
and let µ ∈ Mb(Ω). If

lim
j→∞

∫
f dµj =

∫
fdµ (f ∈ Cb(Ω)), (1.1.6)

then (µj ) converges weakly to µ. The term weak convergence is tradi-
tional in analysis; whereas the term weak∗ convergence would be more
suggestive, since we have convergence in the σ(Mb(Ω);Cb(Ω)) topology.

Proposition 1.1.4 Let E = Cb(Ω) and let J : Prob(Ω) → B∗ ⊂
[−1, 1]B be the map J(µ) = (

∫
fdµ)f∈B . For a sequence (µj ) in Prob(Ω)

and µ ∈ Prob(Ω),

µj → µ weakly ⇔ J(µj ) → J(µ) in [−1, 1]B (j → ∞). (1.1.7)

Proof. This is immediate from the definitions. �

Proposition 1.1.5 Let K be a compact metric space. Then Prob (K)
with the weak topology is a compact metric space.

Proof. This follows immediately from Theorems 1.1.2 and Theorem
1.1.3 since Prob(K) is linearly isometric to a compact subset of
C(K;R)∗. �

Theorem 1.1.2 thus gives a metric for weak convergence on a compact
metric space so that Prob becomes a compact metric space. The defini-
tion of the metric in Theorem 1.1.2 is rather contrived, so in Section 3.3
we shall introduce a more natural and useful metric for the weak topol-
ogy, called the Wasserstein metric.

Examples. (i) The metric space (Mb(Ω), ‖ . ‖var ) is nonseparable when
Ω is uncountable. Indeed ‖δy − δx‖var = 2 for all distinct pairs x, y ∈ Ω.

(ii) Whereas B∗ is compact as a subspace of [−1, 1]B , J(Prob(Ω))
is not necessarily compact when Ω is noncompact. For example, when
Ω = N and δn is the Dirac unit mass at n ∈ N, (δn ) does not have any
subsequence that converges to any µ ∈ Prob(N). In Proposition 1.2.5
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Metric measure spaces 9

we shall introduce tightness criteria that ensure that measures do not
leak away to infinity in this way.

In applications, one frequently wishes to move measures forward from
one space to another by a continuous function. The following result
defines the push forward or induced measure ν = ϕ	µ on a compact
metric space. A more general version appears in Theorem 1.3.5.

Proposition 1.1.6 (Induced measure). Let ϕ : (Ω0 , d0) → (Ω1 , d1) be
a Borel map between metric spaces where (Ω1 , d1) is compact. Then for
each µ ∈ Mb(Ω0) there exists a unique ν ∈ Mb(Ω1) such that

∫
Ω1

f(y)ν(dy) =
∫

Ω0

f(ϕ(x))µ(dx) (f ∈ Cb(Ω1)). (1.1.8)

Proof. For f ∈ Cb(Ω1), the function f ◦ ϕ is also bounded and Borel,
hence integrable with respect to µ. The right-hand side clearly defines a
bounded linear functional on Cb(Ω1), and hence by Theorem 1.1.3 there
exists a unique measure ν that realizes this functional. �

The following result is very useful when dealing with convergence of
events on probability space. See [73, 88].

Theorem 1.1.7 (First Borel–Cantelli lemma). Let (An )∞n=1 be events
in a probability space (Ω;P), and let C be the event with elements given
by: ω ∈ C if and only if ω ∈ Ak for infinitely many values of k.

If
∑∞

n=1 P(An ) < ∞, then P(C) = 0.

Proof. We shall begin by checking that

C =
∞⋂

n=1

∞⋃
k=n

Ak . (1.1.9)

By axiom (σ3), Cn =
⋃∞

k=n Ak is an event for each integer n ≥ 1;
consequently,

⋂∞
n=1 Cn is also an event. If x belongs to C, then for each

n, there exists kn ≥ n with x ∈ Akn
, so x ∈ Cn. Consequently x belongs

to
⋂∞

n=1 Cn. Conversely, if x ∈
⋂∞

n=1 Cn, then for each n, x belongs to
Cn; so there exists kn ≥ n with x ∈ Akn

. But then x belongs to infinitely
many Aj, and hence x is an element of C.

We can estimate the probability of Cn =
⋃∞

k=n Ak by

P(Cn ) ≤
∞∑

k=n

P(Ak ), (1.1.10)
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10 Random Matrices: High Dimensional Phenomena

using the axioms of measure. By hypothesis, the right-hand side is the
tail sum of a convergent series, and hence

∑∞
k=n P(Ak ) → 0 as n → ∞.

Further, C ⊆ Cn , so we can form a sandwich

0 ≤ P(C) ≤ P(Cn ) ≤
∞∑

k=n

P(Ak ) → 0 (n → ∞). (1.1.11)

Hence P(C) = 0. �

Exercise 1.1.8 Let µ, ν ∈ Prob(Ω) be mutually absolutely continuous.

(i) Show that

ρ(µ, ν) =
∫

Ω

(dµ

dν

)1/2
dν

satisfies ρ(µ, ν) ≤ 1.

(ii) Now let δ(µ, ν) = − log ρ(µ, ν). Show that:

(a) δ(µ, ν) ≥ 0;
(b) δ(µ, ν) = 0 if and only if µ = ν as measures;
(c) δ(µ, ν) = δ(ν, µ).

(The triangle inequality does not hold for δ.)

1.2 Invariant measure on a compact metric group

• A compact metric group has a unique Haar probability measure.

Definition (Compact metric group). A topological group is a topological
space G that is a group with neutral element e such that multiplication
G×G → G : (x, y) �→ xy and inversion G → G : x �→ x−1 are continuous.
Furthermore, if the topology on G is induced by a metric d, then (G, d)
is a metric group. Finally, if (G, d) is a metric group that is compact as
a metric space, then G is a compact metric group.

Metric groups can be characterized amongst topological groups by their
neighbourhoods of the identity as in [87, page 49], and we mainly use
metric groups for convenience. Our first application of Theorem 1.2.1 is
to show that a compact metric group has a unique probability measure
that is invariant under left and right translation. The proof given here
is due to von Neumann and Pontrjagin [130]. Compactness is essential
to several stages in the proof; the result is actually valid for compact
Hausdorff topological groups [87, 130].
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