
1

1

Building intuition

Viscous fluids

All ordinary fluids resist motion because of their viscosity. Our common
experience tells us that fluids like water and air are less viscous than
oil and syrup, but we need a way to quantify that difference. Students
at AIMS began by dropping steel ball bearings of different diameters
into golden syrup contained in a measuring cylinder (see Figure 1),
and measuring the distance travelled by each ball as a function of time.
Their visual experience, confirmed by their data, was that each ball fell
at a constant speed. Therefore the forces on the sphere must have been
in equilibrium. What were those forces?

The ball falls because gravity acts on it. The gravitational force on
the ball is its

weight = ρsVg,

where ρs is the density of the (steel) ball, V is its volume and g is the
acceleration due to gravity.

However, we also know that bodies submerged in fluids experience
a buoyancy force: for example, corks rise upwards in water and helium-
filled balloons rise upwards in air. That buoyancy force is also called
the

upthrust = ρf Vg,

where ρf is the density of the fluid. This relationship, known as Archi-
medes principle, says that the upthrust on a body submerged in a fluid
is equal to the weight of the fluid displaced by the body.
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2 Building intuition

(a) (b)

Fig. 1. (a) Apparatus used to measure the speed at which a steel ball bear-
ing falls through golden syrup. (b) A close-up view. Movie sequences from
which measurements can be made are available at http://www.cambridge.
org/worster/movie1
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Fig. 2. As a solid sphere is displaced downwards through a fluid, a volume
of fluid equal to the volume of the sphere must be displaced upwards to
fill the void. The sphere loses potential energy but the fluid gains potential
energy. It is as if the sphere were counterbalanced by a sphere of fluid of
the same volume.

We can derive this result as follows. If the body moves downwards
a distance z, as shown in Figure 2, then the change in potential energy
of the system is

P = −(ρsV )gz + (ρf V )gz.

The body loses potential energy, but the fluid that the body displaces
gains potential energy. Recall that potential energy is the work done
against the force of gravity, and is equal to the force F times the
vertical distance moved upwards, in this case −z. The net downwards
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Building intuition 3

force on the body is therefore

F = −P

z
= ρsVg − ρf Vg = weight − upthrust.

If the densities of the body and the fluid are different then there is
a net gravitational force (weight−upthrust) on the body, which would
cause it to accelerate if there were no other forces acting. The additional
force that allowed the ball bearings to fall at constant speed, rather than
accelerating, is the viscous shear stress.

Normal stress

Surface stress τ , which I shall abbreviate to stress, is force per unit area.
It is a vector quantity because it has direction as well as magnitude. The
stress exerted by a fluid on a surface can be considered in two parts: the
normal stress (perpendicular to the surface) and the tangential stress.
We know that the force per unit area exerted by a liquid or a gas on a
stationary object is the pressure. Pressure p is part of the normal stress
exerted by a fluid on the surface of a body. If there is no fluid motion
then the stress on a surface with unit normal n is given entirely by the
normal stress, so

τ = −pn,

with the convention that n points into the fluid.

The no-slip condition

It is an experimental fact that, except possibly on molecular scales at
which the fluid can no longer be considered a continuum, the fluid in
contact with a moving solid body has the same velocity as the body.
This is known as the no-slip condition: fluid does not slip tangentially
relative to the surface of a solid body.

In consequence of the no-slip condition, when a body moves through
a fluid that was stationary, there is a gradient in the velocity of the fluid.
The fluid is in motion near the body and at rest far from the body, as
illustrated in Figure 3. Gradients in fluid velocity are called shear, which
is the relative motion of bits of fluid near to one another. The shear of a
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4 Building intuition

U

u

Fig. 3. The thin arrows indicate the instantaneous velocity u of fluid in
the equatorial plane of a sphere falling through it with speed U . The fluid
in contact with the sphere has velocity u = U , while the fluid far away
remains at rest.

(a) (b)

Fig. 4. A spreading puddle of golden syrup as an example of a viscous
gravity current: (a) 4 seconds after the syrup began to be poured; (b) about
20 seconds later. A movie of this experiment from which measurements
can be made is available at http://www.cambridge.org/worster/movie2.

viscous fluid causes dissipation of kinetic energy, which is experienced
by the body as drag. The shear stress exerted by a fluid on a body is
a force per unit area acting tangentially to the surface of the body. It
is proportional to the shear in the fluid adjacent to the surface. The
constant of proportionality is the dynamic viscosity of the fluid, which
we shall quantify more precisely below.

A viscous gravity current

Another experience of the competition between gravitational and vis-
cous forces acting on a fluid comes from watching a puddle of spilt
syrup spreading over a horizontal plane, as shown in Figure 4. Students
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Building intuition 5

at AIMS released some golden syrup from a cylinder onto a perspex
tray and measured the radius of the resulting puddle as a function of
time. We can think about what controls the flow of the syrup in this
experiment in terms of the forces acting on it.

The puddle is deeper in the middle and thins out at larger radii,
so there is more weight of syrup near the centre. Therefore, there is
a higher pressure in the syrup near the middle, and a lower pressure
towards the edges. The radial horizontal pressure gradient provides the
driving force for the flow. However, the fluid does not accelerate. In
fact, it was observed to slow down with time. This is because there is
an opposing viscous shear stress exerted on the fluid by the horizontal
plane, caused by the shear generated in the fluid as it flows horizontally,
subject to the no-slip condition.

Our aim in the next few sections is to understand enough about
viscous shear stresses and the mathematical formulation of the physical
principles we have discussed so far to be able to predict the flow of a
viscous gravity current.

I encourage you now to tackle Assignment 1, which is provided at
the end of this chapter.

Dynamic viscosity

Consider a layer of fluid between two horizontal rigid plates separated
by a distance h, as shown in Figure 5. The lower plate is held stationary
while the upper plate is forced to move in its own plane at a fixed
speed U . It is found experimentally that the force per unit area that
must be exerted on the upper plate is proportional to U and inversely

U

h

u(y)

y

Fig. 5. A thin layer of fluid is sheared between horizontal plates a distance
h apart. The force needed to maintain this motion is proportional to the
shear U/h.
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6 Building intuition

proportional to h. That is,

force

area
∝ U

h
.

Since the plate moves with constant velocity, the forces on it must
balance and so the force per unit area exerted by the fluid on the plate is

τs = −μ
U

h
.

The constant of proportionality μ is called the dynamic viscosity of the
fluid (where ‘dynamic’ means having to do with forces). The negative
sign indicates that the tangential viscous shear stress τs is in the opposite
direction to the motion of the upper plate.

Tangential shear stress

The no-slip condition implies that the velocity of the fluid between the
horizontal plates must vary from zero at the lower plate to U at the
upper plate. In fact, the variation is linear and the term U/h is therefore
equal to the gradient of the fluid velocity. In general, the tangential shear
stress exerted by a fluid on a rigid surface is

τs = μ
∂u

∂n
≡ μn · ∇u,

where u is the component of the velocity field tangential to the surface
and n is the normal to the surface pointing into the fluid.
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Building intuition 7

Assignment 1

I encourage readers to do the physical experiments described in this
chapter for themselves. Alternatively, measurements can be taken from
http://www.cambridge.org/ worster/movie3 (where details about setting
up the experiment can also be found), or the data obtained by students
at AIMS, reported in Tables 1 and 2, can be used to complete the
assignment.

The first exercises relate to the measurement of viscosity made by
dropping ball bearings through a viscous fluid.

(i) For each of the experimental runs reported in Table 1, plot the
distance travelled by the ball as a function of time.

(ii) Use your graphs to determine the speed of the ball in each case.
What do you notice?

(iii) Given that the drag on a sphere of radius a moving at speed U

through an unbounded viscous fluid is F = 6πμaU , estimate
the dynamic viscosity μ of the fluid. (You will need to find
the densities of steel and of golden syrup: you could use the
internet.) Do you obtain the same value of μ from each experi-
ment? Explain what you find. What is your best estimate of the
dynamic viscosity?

The following exercises relate to the experiment on a viscous gravity
current. Data was collected of the radius of the current rN at various
times t , as given in Table 2. Four measurements of rN were made at
each time.

(iv) Plot a graph of rN against t . You could plot each value of rN

separately (on the same graph) and the average of the rN at each
time.

(v) Supposing that rN = atb, determine the constants a and b from
the data.
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8 Building intuition

Table 1. Data collected of the distances z travelled by steel
ball bearings of different diameters d falling through golden
syrup, as functions of time t .

d = 4.0 mm d = 6.3 mm d = 9.5 mm d = 12.7 mm
t(s) z(cm) z(cm) z(cm) z(cm)

0 0 0 0 0
5 0.5 0.8 0.5 3.2

10 0.9 2.4 1.5 6.1
15 1.5 3.5 4.5 8.9
20 2.0 4.5 6.4 11.8
25 2.4 5.6 8.4 14.2
30 2.9 6.5 10.4 16.7
35 3.4 7.5 12.4 19.2
40 3.8 8.5 14.3
45 4.4 9.5 16.2
50 4.8 10.9 18.0
55 5.2 11.9 19.7
60 5.6

Table 2. Data collected of the radius rN of a puddle of syrup
of volume 190 ml as a function of time t along four rays
from the centre of the puddle.

Time, t(s) rN1 (cm) rN2 (cm) rN3 (cm) rN4 (cm)

2 5 5 5 5
4 6 6 6 6
6 7 7 7 7
8 7.5 7.5 7.5 7.5

10 8 8 8 8
15 8.1 8.1 8.1 8.5
30 8.5 8.5 9 9
45 9.2 9.2 9.2 9.5
60 9.5 9.6 9.8 9.8
90 10 10 10 10.3

120 10.1 10.2 10.5 10.5
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Parallel viscous flow

Momentum equation

There is a balance between pressure forces that drive the flow of a
viscous fluid and viscous stresses that retard (slow down) the flow. We
can begin to understand this balance by examining a few special cases
in which all parts of a fluid are flowing in the same direction, namely
parallel flow. Consider a steady fluid flow of the form u = (u(y), 0, 0)
in Cartesian coordinates (x, y, z), and the forces acting on a slab of fluid
parallel to the x-axis, as shown in Figure 6. The vertical sides of the
slab experience pressure forces in the x direction, while the horizontal
sides of the slab experience tangential shear stresses in the x direction
from the surrounding fluid. Since the flow is steady, the forces on the
slab must balance, giving us

p(x)δy − p(x + δx)δy + τs(y + δy)δx + τs(y)δx = 0.

Note that the normal to the upper surface of the slab points into the
surrounding fluid in the positive y direction, while the normal to the
lower surface of the slab points into the surrounding fluid in the negative
y direction. This gives us

τs(y + δy) = μ
∂u

∂y
(y + δy) while τs(y) = −μ

∂u

∂y
(y).

Therefore, if we divide the expression for the force balance by δxδy,
we obtain

μ
∂u

∂y
(y + δy) − μ

∂u

∂y
(y)

δy
− p(x + δx) − p(x)

δx
= 0.
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10 Parallel viscous flow
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Fig. 6. The components of the fluid stresses in the flow direction x exerted
on a small rectangular slab of length δx and height δy in a parallel shear
flow u(y).

Taking the limits δx → 0, δy → 0, we obtain

μ
∂2u

∂y2
= ∂p

∂x
.

If we use a similar approach to resolve forces in the y direction (trans-
verse to the flow), we find that

0 = ∂p

∂y
.

Exercise 1 If a parallel flow u = (u(y, t), 0, 0) is unsteady (changing
with time t) and there is a body force (force per unit volume)
f = (fx, fy, 0) acting on the fluid, show that

ρ
∂u

∂t
= μ

∂2u

∂y2
− ∂p

∂x
+ fx,

0 = −∂p

∂y
+ fy.

For example, if x points horizontally and y points vertically upwards
then f = (0,−ρg, 0). These are the x and y components of the
momentum equation for a fluid in parallel flow, with x in the direction
of the flow and y transverse to it.

Boundary conditions

Before we can solve a flow problem, we need boundary conditions for
the momentum equation. At a stationary, rigid boundary the velocity is
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