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PART ONE

FUNDAMENTALS OF LARGE EDDY SIMULATION

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521131339
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-13133-9 - Large Eddy Simulation of Complex Engineering and Geophysical
Flows

Edited by Boris Galperin and Steven A. Orszag

Excerpt

More information

Some Historical Remarks on the Use
of Nonlinear Viscosities

JOSEPH SMAGORINSKY

1.1 Introductory Remarks

This chapter reviews the early experiences of the application of com-
putational methods to the hydrodynamics of large-scale atmospheric mo-
tions: the beginnings of numerical weather prediction (see, for example,
Smagorinsky 1983).

In the early 1950s, the state of the art was a quasi-geostrophic, quasi-
two-dimensional model of large-scale atmospheric dynamics. Of course,
the models were time-dependent and nonlinear. We had just emerged
from the era when we dealt exclusively with barotropic models that sim-
ulated atmospheric evolutions on time scales of one or, at the most, two
days. In these models total kinetic energy was assumed to be conserved.
Models were also being constructed for the next hierarchical step, that
is, baroclinic models which allowed potential-kinetic energy conversions,
thus including the processes related to storm development (baroclinic in-
stability) and thereby extending the validity of the models by another
day or two. The small, but nontrivial, large-scale vertical component of
motion was implied, even quasi-geostrophically.

The crucial achievement in the mid-1950s was the successful construc-
tion by Norman Phillips (1956) of an energetically self-sustaining model
which emulated the prime external radiative energy source and the vis-
cous energy sink. This model was capable of being integrated for ex-
tended intervals and exhibited many of the atmosphere’s nonlinear char-
acteristics such as the fundamental energy or index cycle. Phillips had
used a conventional linear viscosity and conductivity with the coefficient
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0.2L%/3 (in CGS units), determined in accordance with Richardson’s
(1926) empirical law, L being identified with the grid size. What was
being observed in these longer-term integrations was the development
of extended vortex lines, and at the Institute for Advanced Study the
phenomenon was aptly dubbed “noodling.”

John von Neumann, who oversaw Charney’s group at the Institute, re-
called some of his and Richtmyer’s earlier experience (1950) with hydro-
dynamic shocks. In particular, they were dealing with one-dimensional
flows, and were seeking a means “to introduce (artificial) dissipative
terms into the equations so as to give the shocks a thickness compara-
ble to (but preferably somewhat larger than) the spacing of the points
of the network. Then the differential equations (more accurately, the
corresponding difference equations) may be used for the entire calcula-
tion, just as though there were no shocks at all.” Von Neumann and
Richtmyer were guided by earlier physical insights on the roles of dissipa-
tive mechanisms, that is, viscosity and heat conduction, in the behavior
of shocks. The form of the dissipation was derived heuristically and
was “introduced for purely mathematical reasons.” The viscosity was
taken to be proportional to the magnitude of the divergence, which, in
a one-dimensional flow, is indistinguishable from the magnitude of the
deformation.

A second reference has to do with a study by Phillips (1959) on the
occurrence of nonlinear computational instability in the numerical in-
tegration of a barotropic, nondivergent atmospheric model. It was mo-
tivated by his experience, a few years earlier (Phillips 1956), with the
unprecedented long integrations of a quasi-geostrophic, baroclinic, two-
level “general circulation model,” the first of this genre. After several
weeks of simulated time, the appearance of large truncation errors caused
an almost explosive increase of the total energy of the system. This in-
stability at the smallest resolvable scales could not be suppressed by
reducing the time step, as is customary in the case of linear Courant—
Friedrich~Lewy (CFL) instability. However, by periodically eliminating
all components with wave lengths smaller than 4 times the grid size,
that is, an artificial “smoothing,” he was able to suppress the nonlinear
instability.

About 1960, J. Charney and N. Phillips conveyed by personal com-
munication that they had successfully used a two-dimensional version
of the von Neumann-Richtmyer nonlinear viscosity, proportional to the
deformation, to control grid-scale filamentation in trial numerical inte-
grations. Presumably these were for quasi-geostrophic flows.
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In a recently published interview with Charney, conducted in August
1980 (Lindzen, Lorenz and Platzman 1990, p. 61), Charney said that
after using the nonlinear viscosity in 1955 or 1956 he tried a linear
viscosity and “found the results were just about as good and, therefore,
gave up the idea of using the non-linear viscosity, ... other techniques
are probably preferable filtering techniques. Because the one problem
with these viscosities is that in the long run they can give you unrealistic
transports of momentum.”

The present account is based on an attempt in the early 1960s to ra-
tionalize the derivation of a nonlinear viscosity based upon the principles
of modern turbulence theory, particularly those related to Heisenberg—
Kolmogorov similarity in the inertial subrange of three-dimensional,
isotropic turbulence. What I tried to do at the time was to particularize
the classical results from the theory of turbulence to three-dimensional
horizontally isotropic turbulence, in which the vertical component is
quasi-hydrostatically constrained. The formulation, however, in general
is applicable to the primitive equations of motion, that is, where gravity
waves are admissible modes.

The notion of an inertial subrange of fluid motions implies a regime
free from sources and sinks of kinetic energy and separated in wave
number space from the processes responsible for molecular viscous decay.
That is, an equilibrium should exist such that the total kinetic energy of
the subrange is conserved, and that the flow of kinetic energy cascades
from low to higher wave numbers purely by the nonlinear interactions
of the inertial forces.

One purpose for seeking such a subrange in the atmosphere was that,
in the numerical integration of the equations of motion, an artificial
threshold was created by the grid size. For longer waves, the dynam-
ics of the motions were dealt with explicitly, whereas for the shorter
waves, the motions had to be dealt with statistically, that is, paramet-
rically, or ignored entirely. Generally, unless the statistical dynamics of
the turbulence are understood well enough, the explicit dynamics can-
not adequately communicate with the implied viscous subrange. For-
tunately, the results of similarity arguments (Taylor 1935; von Kdrman
and Howarth 1938; Kolmogorov 1941a,b; Onsager 1945, 1949; Batche-
lor 1946; von Weizsacker 1948; Heisenberg 1948a,b; Bass 1949) provided
some insight into the statistical properties of isotropic turbulent transfer
in the inertial subrange which, as will be shown, appears to be formally
applicable to atmospheric motions.

The present account includes a somewhat shortened version of an un-
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published manuscript (Smagorinsky 1962). The latter was written at a
time when a nonlinear viscosity was being used in an atmospheric prim-
itive equation general circulation model (Smagorinsky 1963). However,
the model was constrained to filter out external gravity wave modes.
The essential differences between the derivations in this chapter and the
early draft are in the justification of the quasi-hydrostatic impact on the
viscosity coefficients; in the choice of, and the parametric relationships
between, the numerical coefficients occurring in the turbulence formula-
tion; in correcting the numerical coefficient from 6 to % in (39) below;
and in a rationale for the conditions governing the choice of the single
nondimensional “constant” in the turbulence exchange coefficient.

Much has been learned since, both theoretically and experimentally.
The present perspective reflects on some of the many developments of
the past 28 years. Numerous applications of a nonlinear viscosity have
enlarged the base of experience in meteorology, oceanography and a
variety of other fluid dynamical problem areas.

One may infer the location of a relative inertial subrange for atmo-
spheric motions, at least for those motions sufficiently removed from
the lower boundary and the equator (Figure 1) (Smagorinsky 1974). It
was already well-established in the early 1950s (Onsager 1949; Fjgrtoft
1953) that because of the vorticity conservation by quasi-horizontal mo-
tions, the long barotropic waves (zonal or east-west wave numbers 1 to
3) have associated with them a net transfer of kinetic energy to lower
wave numbers. This property of geostrophic turbulence is responsible
for the -3 power falloff of spectral energy density for the largest atmo-
spheric scales (Charney 1971). It is the range where enstrophy (half the
squared vorticity) is cascaded to smaller scales, but where, in the net,
kinetic energy decascades to longer scales, ultimately maintaining the jet
stream against dissipation. Furthermore, the seasonal monsoon resulting
from the planetary-scale continents provides a quasi-stationary thermal
forcing with a zonal wave number of about 2. Also, the baroclinic in-
stability process (Charney 1947; Eady 1949; Fjgrtoft 1951) provides a
major source of energy in zonal wave numbers 4 to 7 (see, for example,
Holton 1979, pp. 5, 36). Large-scale condensation processes provide an
additional source at somewhat higher wave numbers. The atmospheric
mesoscale, nominally from about 5 to 500 km in horizontal dimensions,
harbors many intense, but generally intermittent and sparse, phenomena
in the extratropics, such as mesoscale convective complexes and fronts
which may not appear in a spectrum taken at any one time. Proceed-
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Fig. 1 A space-time domain for characteristic atmospheric phenomena.
The unstippled region encompasses most of the kinetic-energy-
containing phenomena, with the predominance of extratropical cy-
clones, ultralong waves and the jet stream. The cross-hatched area
denotes scales and phenomena typically resolved by general circu-
lation models, that is, the macroscale. The central heavy diagonal
lines are ¢ = L2/3T~! = constant in units of m?/3 s~1. (After
Smagorinsky 1974, based on a figure by H. Fortag as modified by
K. Ooyama.)

ing somewhat further downscale, we encounter convective phenomena
of various types. However, it has been pointed out by Emanuel (1984)
that “only slant-wise convection is capable of directly generating kinetic
energy in the mesoscale and occurs only intermittently in strongly baro-
clinic situations.” The mesoscale range has proven to be particularly
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Fig. 2 Variance power spectra of wind and potential temperature near

the tropopause from GASP aircraft data. The spectra for merid-
ional wind and temperature are shifted one and two decades to the
right, respectively; lines with slopes -3 and —g are entered at the

same relative coordinates for each variable for comparison. (After

Nastrom and Gage, 1985.)

useful for setting the grid size in studying large-scale motions by numer-

ical simulations.

Recent definitive measurements of atmospheric energy spectra in the
span of horizontal scales 2 to 10,000 km (Figure 2) (Nastrom and Gage
1985) reaffirm that while a -3 slope fits the spectrum for scales larger
than 300-400 km in the “geostrophic turbulence” range, —% fits best for
the mesoscales, that is, for wavelengths between 2.6 km and 300-400

km.
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1.2 The Mean Equations of Motion

If we average the Navier-Stokes equations over a wave number interval
k< k' < oo, we find
&+29xv=—le'+lV-l“—g. (1)
Dt p P
Here, D()/Dt is the individual time rate of change on a particle, V is
the three-dimensional gradient vector operator, v is the average three-
dimensional relative velocity vector, p* is the average molecular pressure,
I'* is the Reynolds stress dyadic, g is the gravitational acceleration vec-
tor, p is the density (its Reynolds fluctuations having been neglected)
and §2 is the earth’s angular velocity vector. We have assumed that the
wave number, k, is sufficiently small that the Reynolds stresses are large
compared with the molecular viscous stresses, which have therefore been
omitted.

I'* may be written as the sum of its average value in all directions and
a deviation, T',

r*= %T+I‘ and [Tl =0, 2)
where Y is the idemfactor and | Y| = 3.

By analogy with the kinetic theory of gases, we interpret |I'*|/3 as
the pressure due to the eddy kinetic energy. Hence, the macropressure
is (Hinze 1959, p. 15)

p=p" —|I*|/3, )
and (1) becomes
%‘t—,+29xv=~%Vp+%V-l‘—g, (4)
in which (1/p)V -T =F is the frictional force vector per unit mass.

1.3 Application of Elasticity Theory

The general theory of viscous fluids conventionally suggests that the
strains of individual fluid elements give rise to stresses analogous to those
in elastic media. However, in fluids, the pressures are proportional to the
rate of strain, since a fluid yields to a shearing stress. One can, therefore,
adapt the formalisms developed in the theory of elasticity provided that
the fluid velocity, v, is used instead of the elastic displacements.

Therefore, we assume, for small deformations, that I'/p is proportional
to the rate of strain dyadic, S = Vv, through a tensor, C, such that

r=ylC-8|, (5)
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in analogy to the elastic function in elasticity. In general, C is a tetradic,
which has 3* (= 81) components.

The kinetic energy equation may be formed by the scalar multiplica-
tion of v and (4) and then integrating over the entire volume. Assuming
closed boundaries, one finds

ST o[ e
_//;=0(v-I‘)-dA—///pedV, (6)

e=|S-Tl/p (M
is the local energy dissipation or decay, [[[pe dV is the energy trans-
formation function between the explicit and eddy flow, dV is a volume
element, dA is a horizontal area element, [[[(pV - v — pv - g) dV is the
potential-kinetic energy conversion, and [f _ (v -T)-dA is the energy
dissipation due to the eddy stresses tangential to the lower boundary at

where

z = 0, z being the vertical coordinate, opposite to the direction of g.
Hence, if we write the matrices of the tensor components symbolically

as
S > S, T'—=7nr, C— Chnnrs, (8)
then the equations for the stress components are
Tmn/0 =Y CrnreSre (9)
and
€= Y CmnrsSmnSrs: (10)
mnrs

It follows from energy considerations (Sokolnikoff 1946, p. 63) that
there exists a reflective symmetry along any arbitrary axis, so that

Srs = Ssr, Tmn = Tnm, Cmnrs = Cramn = Cnmra = Cmnara (11)

in which case there are only 6 independent S;, and Tmn, and 21 inde-
pendent Crynrs.

1.4 Axial Symmetry

We will now confine our attention to a scale of motion sufficiently small
that these motions can be regarded as horizontally isotropic, that is,
symmetric with respect to the vertical axis. This definitely excludes the
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barotropic long-wave regime and probably the energy-producing baro-
clinic instability regime.

The axial symmetry of 7,,, and S,, contracts their matrices to 6 x
6, resulting in 9 nonzero Cyprs, of which only 3 are independent when
(2) is taken into account:

Z’rmm =0, (12)

- _1 __1 _1
a = —3Cn33 = —3C2233 = Ca333 ,

g 3(C1111 — Ci122) = 3(C2222 — Cr122) = Cia1z2 (13)
¥= Ciaiz = Ca323 .
The stress components may now be written

m/p= B(S11 —S2)+a(V-v—-3S3),
T22/p = —B(S11 — S22) + (V- v — 3533) ,
133/p = —2a(V - v — 3533) ,
Ta3/p= Ta2/p=27Sas,
Ti3/p= Ta/p=2751s,
Tiz/p= Ta/p=2B51,

(14)

where
d
V'V=511+522+533=—EIHP (15)

by the equation of continuity.
Also, in the case of axial symmetry, one may calculate € from (10) and
(14):
€= BD? + aM? + yP?, (16)
where
D? = (Syy — S2)? + (2512)°,
M?=(V.v-3S53), (17)
P? = (2513)% 4+ (2523)% .
It is easy to see that for a, 8,7 > 0, €is positive-definite, thus ensuring
positive energy dissipation.

1.5 Spherical Curvilinear Coordinates

It will be useful to record the forms of the viscous terms in spherical
curvilinear coordinates. We denote the longitude, A (in the direction of
the unit vector iy ), the latitude, ¢ (i), and the radial distance from the
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