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chorion proteins, 42, 45, 270
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cloning, of ampullate silk proteins, 140–41.

See also recombinant DNA technology
coacervation

elastin, 44, 45–48, 325, 367, 370
purification by, 62
resilin, 272
temperature and, 58
tropoelastin, 324

Coccinella septempunctata, 264–65
cockroaches, 42, 264–67, 358, 362
collagen

association with elastin, 20
cross-linking in, 183–87, 202–6, 322–23
deformation mechanisms, 175–78
in dogfish egg capsules, 357–58
elastic energy storage capacity, 25, 27–29
fatigue lifetime, 27–29
fibrillar, as liquid crystal elastomers,
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functional design of, 26–29
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medical applications, 371–72
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procollagens, 307
stress-strain tests, 16–19, 26–27
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tensile properties, 180–82, 191, 361
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tropocollagens, 197, 205
X-ray diffraction, 178–79

configurational transitions, 65
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corneas, resilin in, 265
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crabs, 266, 357
crayfish, 265
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cross-linking, 321–37
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in gluten, 322, 330–31
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liquid crystal elastomers, 303–6, 312
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metal-ion complexes, 333–34
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non-covalent, 333–35
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in resilin, 261–62, 270, 274, 321–23
in spectrin, 216, 221, 226, 231, 322
in spider silks, 322, 334–35
structure and, 78
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cushioning impacts, 11–12
cuticles

dehydration in, 359
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as fibrous composites, 356–57
resilin in, 260, 263, 265, 270, 271–73,

341
cylindriform glands, 155

Dacron, 367
damselflies, 265
Dea, J., 54–93
dehydration, 359. See also hydration level
depolarization, spectrins and, 217, 232
desert locust, 259. See also locusts
desmosine, 43, 47, 78, 324
diabetes mellitus, 374
dielectric permittivity, 74–77
dielectric relaxation, 71–73
Discher, D. E., 342, 347
disulphide bonds
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in gluten, 280–81, 283, 292–93, 294,

330–31, 335
in titin, 252

dityrosine, 261–62, 264, 266, 270, 321–23,
333

dogfish, 205, 305–8, 357, 359
dogs, 4–5, 11
dolphins, 7, 9
DOPA, 196, 202–5, 331–32, 333, 359
dough mixing, 281, 286, 290, 292–94, 296,

330. See also gluten
dragline silks. See also ampullate gland;

spider silks
biophysical studies, 144–45
elasticity, 346–47
electron microscopy of, 164
functional design, 32–35
as liquid crystal elastomers, 308–12
manufacturing, 167
mechanical properties, 137–38,

312
spiral silks compared to, 158–63
structures, 339–40, 343–44
water plasticization of, 163–65

dragonflies, 23, 259–62, 267–68, 273
Drosophila melanogaster

flight mechanisms, 6–7
resilin in, 266–68, 272, 322, 341
spectrins in, 217, 219, 223
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dynamic testing, 21–22
dystrophin, 221, 223, 233

earwigs, 265
ecribellate spider silk, 157. See also under

names of individual species
effective mass parameter, 9
effective spring constants, 16, 225, 227–29
elasticity. See also elastomeric force;

entropy; tendon elasticity
of abductin, 346
from damping of internal chain

dynamic on extension, 82–90
definition of, 20
effect of water droplets on, 160–65
of elastin, 345–46
of fibrillin, 347–48
of gluten, 284, 286, 292–94, 296, 330,

347
historical explanations, 57–58
hysteresis and, 148–49, 154, 160, 190–91
ideal, 54–55, 57
of liquid crystal elastomers, 303, 307–8,

312
models of, 61, 62, 182–87, 345–48
of muscles, 245–46
of mussel byssal, 346
random chain network theory, 77–81
of resilin, 261, 269–70, 346
soft, 303
of spectrins, 223, 225, 227–28, 347
of spider silks, 138, 148, 154, 312,

334–35, 346–47
of titin, 347
viscoelastic model for tendon

elongation, 182–87
elastic modulus

of collagen, 361
from force-extension curves, 66–69
incremental modulus, 192–95
in joining materials, 193–94
of mussel byssus, 189–90, 207
random coil state, 68
of resilin, 260
single-chain, 68–69
from stress-strain curves, 19, 26
in tendon elongation, 185–86
thermal denaturation and, 79–81

elastic storage, 6–7
elastin

acoustic absorption experiment, 69–71

aggregation as an ordering process,
46–49

�-elastin, 62, 63, 75–77
amino acid sequences in, 340
in arteries, 11, 20
association with collagen, 27
atomic force microscopy of, 63–69
coacervation, 44, 45–48, 325, 367, 370
cross-linking of, 43, 62–63, 75–77, 322,

323–25, 367–69
dielectric relaxation, 75–77
elastic energy storage capacity, 25–26
elasticity, 345–46
fatigue lifetime, 23–25
functional design, 20–26
hydration level, 21–22, 31
lack of turnover of, 40
in ligamentum nuchae of ungulate

mammals, 11
limitations in flight, 22–23
medical applications, 366–70
microfibrillar component, 39
models, 61–63
oscillator frequency, 90
polypeptides, 45–49
preparation, 62
prevention of calcification by, 369
random chain network theory, 57
recombinant polypeptide self-assembly,

45–46
resilin compared to, 269
self-aggregation of, 44–45
structural models, 40, 343
synthesis, 62, 341
temperature effects, 21, 22, 44, 59–61,

79–81
tensile properties, 16–19, 22, 24, 191
torsion angles, 87–88
tropoelastin, 39–44, 58, 61–62, 324, 339,

341
elastin binding protein (EBP), 39, 41–42
elastin polypeptides (EP), 45–49
elastoidin, 304–5
elastomeric force

from decrease in freedom of motion,
89–90

internal energy and entropy
components, 55–56

loss from thermal denaturation, 79–81
from a single chain, 78–79
solvent entropy changes and, 81–82
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electron microscopy
scanning, 116–18, 125–26, 368
transmission, 116, 118–19, 126, 128–32,

164–65, 308–9, 311
Enallagma cyathigerum, 265
endocytosis, spectrins and, 218
energy, internal, 55–56
energy dissipation, 190–91. See also

hysteresis
energy storage

calculations of elastic, 25–26
in flight, 6–7
in running, 4–6
Storage Modulus, 21
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tendon collagen, 27–29

entropy
�-spirals, 82–84, 89–90
change on extension, 57, 87–89
in elastin elasticity, 345
in elastomeric force, 55–56, 78–79
historical explanations for elasticity,

57–58, 75–77
oscillator frequency and, 90
random chain network theory, 77–81
of resilin elasticity, 261, 270, 346
solvent, 58, 81–82
in spider silk elasticity, 149
statistical mechanical expression for, 56
tendon deformation, 175
as a volume in configuration space, 89

epithelial cells, spectrins in, 216, 219,
230–32

erythrocytes, spectrins and, 216, 219–22,
226–27, 230

evolution of elastomers, 213–14, 223, 284,
290

extensibility
of collagen, 26, 325
ionic strength and, 234
of mussel byssus, 191
reversibility in microfibrils, 106–9
of spectrins, 224–27
of spider silks, 312
from stress-strain tests, 17, 19
of tendons, 176
of titin, 246–52
units, 16

fatigue lifetime, 23–25, 27–29
feedback loops, 314

fibrillin, 94–114. See also microfibrils
cross-linking, 322, 328–30
domains in, 342
elasticity of, 347–48
importance of, 96
isoforms of, 39, 95–98
mass per unit length, 108
in microfibril cross-section, 101, 108
molecular assembly, 98–101
in untensioned microfibrils, 101–5, 108

fibrillogenesis, 205
fibroin, 355, 370
fibrous composites, 356–60
fireflies, 265
fish, cartilaginous, 304
flagelliform silks. See also spider silks

domain sequences, 339
proteins in, 141–42, 147, 149, 155
water as plasticizer on, 160

flea beetles, 2
fleas, 1–2, 264
flies, 220, 232, 235
flight systems

in birds, 7, 22–23
in insects, 6–7, 23, 259–60, 264–65
resilin in, 259, 264–65

Flory, Paul, 57, 58, 59, 75, 77–81, 345
fluorescence, of resilin, 263, 264, 270,

273
force control, 12
force vs. extension curves

elastins, 64–69
spectrins, 224–25, 230–31
titins, 246, 248–49

Forficula auricularia, 265
fracture resistance, 361
Frank-Starling mechanism, 252–53
Fratzl, Peter, 175–88
fruit flies. See Drosophila melanogaster
furin processing, 100

�-glutamyl-ε-lysine cross-links, 328–29,
333

Gaub, H., 54–93
gelsolin, 233
genome stability, 221
genomic sequences, 141–42, 266–68
gliadins, 280–81, 283–85
glue proteins, 332, 359–60
glutamine, 284, 287, 293–94
glutaraldehyde, 369, 373
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cross-linking, 322, 330–31, 335
disulphide bonds, 280–81, 283, 292–93,

294, 330–31, 335
elasticity of, 284, 286, 292–94, 296, 330,
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evolution and selection, 284, 290
HMW glutenin subunits, 284–86, 288,

290–97, 330, 335, 339–41
“loop and train” model, 293–94
network composition, 279
non-repetitive domains, 291
proteins in, 283–86, 340–41
repeated sequences, 284–90, 339, 344
synthesis in wheat grains, 279–83
temperature effects, 290
in transgenic wheat, 294–97

glutenins, 280–81, 283–85, 292–94, 296–97,
344. See also gluten

glycine, 200, 205, 263, 268–69, 271, 287
glycophorin C, 227, 229
glycoproteins, 162–63
Golgi apparatus

gluten and, 281–82
spectrins and, 218–19, 235
spider silks and, 127–28, 131–32

Gosline, John, 15–38, 136, 138, 160, 191,
312, 341, 343, 346

Guerette, Paul, 15–38
GVGIP, 65–67, 71–73
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hair cells, 216–17, 232–33
Halford, Nigel G., 279–1
Haliotis rufescens, 353–54
“hand-shaking” signatures, 204–5
Hayes, L., 54–93
heart failure, 252–53
Helmholtz free energy, 55
Henia, 360
high-tensile steel, properties of, 19
hinge ligaments, 10
histidine, 202–5
Hooke’s law, 20
horses, 5
hovering moth, 6
Hugel, T., 54–93
humans

cataracts, 323
cushioning impacts in running, 11–12

elastin in, 41–42, 45–46
medical uses of elastomers, 366–77
spectrins, 222
tendon elasticity, 5

humidity. See hydration level
hummingbirds, 7, 22
Hydra, 199
hydration level. See also water

of dragline silks, 35–36
of elastin, 20–22
of gluten, 293
of liquid crystal elastomers, 305
of resilin, 20–22, 261, 269
temperature effects on, 59–61, 353
water as plasticizer, 159–65

hydrogen bonds
in fibrillin, 329
in gluten, 293–94, 296, 335
in resilin, 269
in spider silks, 149, 335
in tendon collagen, 184
in titins, 249
in water plasticization, 163–64

hydrophobicity, 271–72, 313, 322, 334–35,
346

hydroxylation, 326–27
4-hydroxyproline, 200
hysteresis

effect of water on, 160
in mussel byssus, 190–91
in spider silks, 148–49, 154, 191
in titins, 249

inertial work, 6
insect flight, 6–7, 23, 259–60, 264–65
inverse temperature transition, 59
ionic strength, 234, 246–47
iron, 203, 333
ischemic injury, 221
isodesmosine, 43
isoelectric focusing (IEF), 280

jellyfish, 8
Joule and Thomson correlation, 54

kangaroo rats, 5
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Kevlar, material properties of, 19
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lamellar liquid crystal elastomers (LLCEs),
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elastomers

lamprey cartilage, 328
lamprin, 42, 45, 322, 328
latent transforming growth factor-�

binding proteins (LTBPs), 97
Lee, David, 94–114
Lewis, R., 136–51, 342
ligamentum nuchae, 11
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liquid crystal elastomers (LCEs), 302–20

cross-linking, 303–6, 312
director fields, 303
dragline silks as, 308–13
elasticity of, 303, 307–8, 312
exotic properties, 314–15
fibrillar collagen as, 304–8
lamellar, 304
mesogenic domains, 303–4
mesophases, 302
production of biomimetic materials, 314
spider dope precursors, 312
tensile properties, 314

lobster aorta, 94–96
locusts

catapult mechanisms, 2
flight mechanisms, 23
resilin in, 259, 261–64, 266–68, 270, 273,

341
Loligo, 355
longissimus muscle, 6
“loop and train” model, 293–94
Loss Modulus, 21
Loxosceles laeta. See also spider silks

ampullate gland morphology, 120–22,
129–33

ampullate gland ultrastructure, 125–28
ampullate spigot morphology, 122–25
electron microscopy, 116–18, 126,

128–32
shape of ribbon, 115
spinning mechanism, 129–32
structure of retreat and ribbons, 116–20

Lucas, Jared M., 189–212
lysinonorleucine, 43
lysyl oxidase, 39, 43, 48, 323–28

magnesium, 198
Manduca, 6
man-made elastomers. See also

biomimetic applications
ceramics with elastomers, 355–56
fibrous composites, 356–60
joints in, 193–94
liquid crystal elastomers, 314
mechanical properties, 360–62
resilin, 270–71
silk on mineral substrates, 355–56
spider silks, 167–68

Mantis, 358
Marfan syndrome, 95, 330
maximal work function, 55
mechanical resonance, 73–75
medical uses, 366–77

branched triple helical peptides,
372–75

collagen, 371–72
elastin, 366–70
silks, 370–71

merodesmosine, 43, 324
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metal chelates, 202–5, 333–34
Metridium, 10
mice, 217, 220–21
microfibrils

antibody binding studies, 103–5
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104
bundle extensibility, 109–10
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fibrillin in cross-section, 108
fibrillin molecular alignment in,

101–10
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extensibility, 106–9
molecular composition, 97
untensioned, 101–6, 108
water plasticization of, 163–65

M-line proteins, 244
models

axial assembly, 204–5
elastin, 40, 61–63, 66–69
fibrillin in extensible microfibrils,
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gluten “loop and train,” 293–94
mechanical, 206–7
oscillatory motion, 8–10
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spectrins, 225
spider dragline silk, 309
tendon elongation, 182–87
worm-like chain, 65

modulus. See elastic modulus
monoclonal antibodies, 103
mother-of-pearl, 354
moths, 265
mouse, 217, 220–21
muscles

force control, 12
model of oscillatory motion, 8–10
role of resilin in, 264
role of titin in, 243–46, 250–53

muscle speed parameter, 9
muscular dystrophy, 223
mussel byssus

amino acid sequences, 340
assembly, 202–6
axial sequence, 204–5
composition of, 195–96
cross-linking, 202–6, 322, 331–34
dehydration in, 359
description of, 189
domains, 199–200, 339
elasticity, 346
functional design, 29–31
identification of protein gradients,

200–2, 207
incremental modulus, 192–95
mechanical models, 206–7
prepepsinized collagens, 42, 196–205
register and density, 205–6
self-aggregation, 45
stress softening, 191–92
stress-strain tests, 16–19, 190–92
tensile properties, 189–92

mutations, spectrin, 216, 219–21, 232,
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Narayanan, A. S., 47, 48
natural rubber, 71, 72

Nephila. See also spider silks
byssal protein sequences, 198
conditions for manufacture, 167–68
electron micrographs of dragline silk,

165
liquid crystal elastomers from, 309, 312
temperature and spinning, 166–67
water plasticization of silk, 163–65

Nephila clavipes, 126–27, 138, 141–42, 144,
157

Nephila edulis, 33, 119, 127–28, 168, 311
Nephila madagascariensis, 141–42, 164
neuroglian, 217
nickel, 205
Northern blot, 140–41
Novex-3, 243
nylon, 363

oothecin, 42
open canalicular system (OCS), 216–17,

233
orb web spiders. See also spider silks

composition differences in silks, 155–56
liquid crystal elastomers from, 308–12
protein sequences of silks, 143
spinning mechanisms, 129–33
types and uses of silks, 136–37, 153–56
typical web structure, 156–57
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oscillator frequency, 90
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outer hair cell (OHC) membranes, 216,

232–33
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Palamnaeus swammerdami, 266
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pepsinization, 196
periostracum, 191
Periplaneta americana, 42, 264–67, 358,

362
peroxidase, 270–71, 321–23
persistence length, 65, 246
Petunia, 198
PEVK regions, 243, 245, 248–49, 251,

344–45, 347
pharmaceutical applications, 371–72
PH domains, 217–18
phenolic tanning, 358–59
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phospholipids, spectrins and, 217–18, 235
Photinus pyralis, 265
photobleaching techniques, 227–28
piezoelectricity, 314
platelet adhesion, 366, 368, 373
platelet plasma membranes, 233–34
pleckstrin homology (PH), 213
PNIPAM, 59–60
poly(GVGIP), 71–75, 82–84, 86
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