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1 SPIN-ORBIT COUPLING AND
INTERSYSTEM CROSSING

SPIN-ORBIT INTERACTIONS IN
ORGANIC MOLECULESY

H. F. HAMEKA

Forbidden transitions

In spectroscopy the expression ‘forbidden transition’ is used to
describe a transition with a probability that is much smaller than
normal. We may indicate how strongly forbidden a transition is by
giving the ratio between its probability and the probability of a normal
transition; there are cases where this ratio is 1010 or even less. The
word ‘forbidden’ is thus used in a relative sense; in fact, all known
forbidden transitions must necessarily have finite transition proba-
bilities.

From a theoretical point of view a transition is forbidden if its
probability is zero in zeroth-order approximation and if its magnitude
must be evaluated from higher-order approximations. Let us first dis-
cuss this zeroth-order approximation. We consider an atom or a
molecule containing NV electrons; in the case of a molecule we introduce
the variable R to denote symbolically the positions of the nuclei. Such
a system is described in zeroth-order approximation by the
Hamiltonian

H—§ﬁ+V(r r ry; R) (1)

v=Zom vl ..., Ty; R).

We denote the eigenvalues of H, by E, and the corresponding eigen-
fanctions by W, . These functions contain the position coordinates
(ry, Ty, ..., T'y) of the electrons, the electron spin variables (s, s,, ..., Sy)
and also the nuclear coordinates R. It follows from the exclusion
principle that the functions ¥, must be antisymmetric with respect to
permutations of the electron coordinates and, consequently, that each
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2 H. F. HAMEKA

function ¥, must be an eigenfunction of the operators % and S,.
These two operators are defined with the aid of the vector

S=85+S,+S;+...+ Sy, (2)
where the operators S; define the spins of the individual electrons.
Hence 82 = (5,800 + (5,85, + (5,5,

S, = 2,8, (3)
In general S, = s(s+1) ﬁmpw‘l
S,¥, =m ¥, | ®

where s and m, are the quantum numbers that label the spin states.
Their possible values are

§=0,1,2,3,...,etc. (N is even),

s=13%,4,3,...,ete. (N is odd), (5)

ol

m,=—s8,—s+1,...,8

It is easily seen that for a given value of s the corresponding spin state
is (2s+ 1)-fold degenerate. This number, 25+ 1, is called the multi-
plicity of the spin state. It is used to identify the eigenvalues of §% and
is written as a superscript on the left-hand side of the eigenfunction.
For example, 1%, describes a singlet state with s = 0, ¥, ;is a doublet
state with s = } and m, = j, 3%, ; is a triplet state with s =1 and
mg = j, ete. Different eigenfunctions are orthogonal,

<k1Fn,ilnFm,:i> = 6n,mak,lai,f' (6)

Also W, | Gop(Ty, Ty, oo, T, B)W, 5 = 0 (7)

for different spin states, that isif k + l or ¢ + j, because the spin func-
tions belonging to different spin states are orthogonal.

Let us now consider the calculation of the transition probability

between two states (0) and (f). A plane monochromatic light wave
may be represented by a vector potential A, which is given as

A = A, ey e 2ty gtnivl) (8)

with the abbreviation — 9)

Here e is a unit vector, which represents the direction of polarisation

of the light, ¢ is the wave vector which describes the direction of
propagation and also the wavelength,

o=1/A, (10)
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SPIN-ORBIT INTERACTIONS 3

and v is the frequency of the light. We have taken the scalar potential
of the radiation field equal to zero; this is allowed if we take

divA =0, (11)

or (e.c) =0. (12)

The electric and magnetic field strengths of the light wave are given by

10A
E=_Eﬁ’ H=Cur1A. (13)
Finally, 4, is a constant, which is a measure of the energy density of
the radiation field.

In the presence of an electromagnetic field the Hamiltonian (1)

becomes 1 .

Here the electromagnetic field is represented by a scalar potential @
and a vector potential A; ®; and A; are the potentials experienced by
the j-th electron. The perturbation term which is responsible for optical
transitions is the term of (14) which is linear in A, that is

, €
Hj= —%A,.p; (15)

Here and in (14) the charge of the electron is given as (—e).
From (8) and (15) we derive @ that the time-proportional transition
probability between two states (0) and (f) is given by

62
Woef:mﬂfoﬂf,g’ (16)
ith H., =M |Zv.(e. V)|V,
w1 o = (4| Z575(e. V)| o>l (17)
hvoy = E,— E,, J

Here E; and E, are the eigenvalues and ¥, and ¥, are the eigen-
functions of the states (f) and (0) respectively.

In atoms and molecules the dimensions of the systems are usually
much smaller than the wavelength of the light and it is customary to

assume that c.r<l, y~1, (18)

may be substituted into (17). In that case (17) may be transformed to
the customary expression

Hyy = — (2mmwyfei) (e . Pfo),}
Pry = (FleZ;ry| o),

7

(19)
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4 H. F. HAMEKA

where Pj, is called the transition moment between the states (0)
and (f).

We call a transition forbidden if the transition moment (19) is equal
t0 0. It is possible that P, is 0 by coincidence, but this is very unlikely
and we do not consider this. Otherwise there are two possible reasons
that can cause the transition moment to be zero. The first one is a
difference in spin quantum numbers between the states (0) and (f);
we speak then of spin-forbidden transitions. The second reason is that
the integration over the electron position coordinates in (19) gives zero
because of the symmetries of the states (0) and (f); in that case the
transition is called symmetry-forbidden.

The above discussion is based on the zero-order approximation, and
we mentioned already that the finite probabilities of forbidden transi-
tions can be explained only by considering higher-order approxima-
tions. In the case of spin-forbidden transitions we ought to consider
more accurate Hamiltonians than H; of (1) and H; of (14) in order to
derive a satisfactory theory. In the case of symmetry-forbidden transi-
tions we can arrive at finite transition probabilities by using (17), and
there is no need to consider higher-order terms of the Hamiltonian.
Here there are two mechanisms that make the transition possible. The
first mechanism is derived by observing that the approximation (18)
is inadequate and that instead we ought to substitute

Vi = 1+i(o.1)) (20)
into (17). We obtain then

Hy, = <‘Pflizj(c .I;)(e. Vj)qu0> (21)

since the first term on the right-hand side of (20) gives zero if the transi-
tion is forbidden. Transitions that are described by (21) are called
magnetic dipole or electric quadrupole transitions, as opposed to
electric dipole transitions, which are described by equations (19).

In molecules there exists a second mechanism that can make a
symmetry-forbidden transition possible, namely, the molecular vibra-
tions. The symmetry rules for the electronic wavefunctions are
derived on the assumption that the nuclei are fixed at their equi-
librium positions and the small, but finite, motion of the nuclei has
the effect of distorting the symmetry of the electronic wavefunctions
and to make the transition possible. We speak here of a vibrationally-
allowed forbidden transition.

In the following section we will discuss the theory of spin-forbidden

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521126502
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-12650-2 - The Triplet State

Edited by A. B. Zahlan, G. M. Androes, C. A. Hutchison, H. F. Hameka, G. W. Robinson,
F. W. Heineken and J. H. van der Waals

Excerpt

More information

SPIN-ORBIT INTERACTIONS S

transitions, and we will see that the general theory of forbidden transi-
tions is exactly the same for atoms and for molecules. In practice, on
the other hand, there are important differences between atoms and
molecules because the orders of magnitude of the various effects that
make forbidden transitions observable are quite different in the two
cases. In an atom a symmetry-forbidden transition can occur only as
an electric quadrupole or a magnetic dipole transition, and this means
that the transition probability is at most 10— times the probability of
an allowed transition. In a molecule a symmetry-forbidden transition
can be made possible by vibrations or a number of other effects and
the probability varies between 10~% and 10~ times a normal transition
probability. Consequently the symmetry restrictions are much more
rigid for atoms than for molecules.

6" Mg
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Fig. 1. A log-log plot illustrating the effect of atomic number on the intensity of a
spin-forbidden transition.(®

The general theory of spin-forbidden transitions is the same for
atoms and molecules, but a very important difference between an
atom and a molecule is due to the central symmetry of an atom as
opposed to a molecule. As a consequence we are able to transform the
theory of spin-forbidden transitions in atoms to a much simpler form
than we can do for molecules. It is important to recognise that the
detailed theoretical expressions for atoms cannot be applied to
molecules since they were derived on the assumption that the system
under consideration possesses central symmetry. A misappreciation
of this point has led to some confusion in the literature. The prob-
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6 H. F. HAMEKA

ability, or intensity, of a spin-forbidden transition varies widely
between different atoms. For example, in fig. 1 we have plotted® the
intensity ratio between the 1§, 3P, and the 1§,— P, transitions in
a number of atoms ; it is shown that this ratio varies between 10-% and
10~! and that it is inversely proportional to the fifth power of the
atomic number Z. We usually consider spin-forbidden transitions in
organic molecules only where the atoms are fairly light (Z < 10).
Here the probabilities of spin-forbidden transitions vary between 10-5
and 10~1° times the probabilities of allowed transitions.

It follows from the above orders of magnitude that any molecular
transition with a probability that is less than 10-5 times a normal
transition is very likely spin-forbidden. In heavy atoms spin-forbidden
transitions are almost as intense as normal transitions, and much more
intense than symmetry-forbidden transitions. In light and inter-
mediate atoms spin-forbidden and symmetry-forbidden transitions
have comparable probabilities.

Spin interactions in the Hamiltonian

The finite probabilities of spin-forbidden transitions can be under-
stood only if we base our considerations on Hamiltonians that are
more accurate than the ones reported in equations (1) and (14). More
specifically, we must derive the parts of the Hamiltonian that depend
on the electron spin. The derivation of these spin-interaction terms is a
straightforward problem, which has been solved satisfactorily in a
number of different ways. However, there seems to be some confusion
in the literature as to the correct form of the spin Hamiltonian for
molecules. This confusion stems from the fact that in an atom the spin
Hamiltonian can be transformed further because of the central sym-
metry and that attempts to use these atomic spin Hamiltonians for
molecules led to inconsistent results. We have even encountered
statements in the literature® which claim that the spin Hamiltonian
for a molecule is not known. These statements are obviously incorrect
since the general form of the spin Hamiltonian, valid for both atoms
and molecules, has been known since the late twenties.

We mentioned already in the previous section that the angular
momentum of a spinning electron is represented by an operator S. For
a single electron the quantum number s, defined by equation (4), is 1
and the possible values of the other quantum number m, are m, = + .
We denote the two eigenfunctions of S, by « and . By drawing an
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SPIN-ORBIT INTERACTIONS 7

analogy with the properties of the orbital angular momentum operator
it may then be derived that

Sy =3B, S,a =3}k, S,a= %ha,}

: (22)
8,8 =, 8,8= —}ifia, S,p=—3p.

A spinning electron possesses also a magnetic moment w, which is
related to S by means of w = (—e/mo) S. (23)

This expression was first proposed by Goudsmit & Uhlenbeck®
because it leads to a satisfactory explanation of the experimental data;
it can be derived from the Dirac equation and it was also obtained by
Kramers® from a non-quantum mechanical, relativistic, argument.

Let us first derive the spin Hamiltonian of an electron with a charge
(—e) that moves with a velocity v in a circular orbit around a nucleus
with a charge Ze. We first observe that a magnetic moment w at rest
in a magnetic field H has the energy

E,=—-p.H (24)
It follows from equations (23) and (24) that the spin energy of an
electron at rest, in the presence of an electromagnetic field (E, H), is
given by B, = (¢/me)(S.H). (25)

If the electron moves with a velocity v with respect to the nucleus then
it seems to an observer who is stationed on the electron that the
nucleus moves with a velocity — v. This motion givesrise to a magnetic
field

== (26)

where r is the distance from the nucleus to the electron. According to
this argument the spin energy of the electron becomes
—Ze2(vxr).S

B, = Too VXS (27)

However, this result is incorrect. Equation (27) was derived from the
point of view of an observer stationed on the electron, and the correct
result should have been derived from the point of view of an observer
stationed on the nucleus. This makes a difference because to an
observer on the nucleus it appears that the coordinate system where
the electron is at rest rotates with a frequency®

wp = (1/2c%) (v x a). (28)
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8 H. F. HAMEKA

This is called the Thomas frequency. The acceleration a of the electron

may be replaced by a = Zer/rim, (29)
Ze vxr

SO that (.I)T = WTT . (30)

This means that the electron experiences in addition to the magnetic
field H of equation (26) a field

Zevxr
r=5, 5 (31)
Consequently it experiences a total magnetic field
, Zevxr
and its energy is o Ze (vxr).S -
T 2mez B )

Equation (33) differs from equation (27) by a factor of one half, which
is known as the Thomas factor. Finally we introduce the angular

momentum L= m(r X V) (34)
of the electron and we write (33) as

, Ze?
Es=%jc2a73(L.S)=g(r)L.s. (35)

This is the well-known expression for the spin-orbit coupling of an
electron in a central force field. It is important to realise that equation
(35) is neither valid for non-central force fields nor for many-electron
systems.

It was shown by Thomas® and, subsequently, by Kramers® that
the general expression for the spin energy of an electron in an electro-
magnetic field (E, H) is given by

E;:mics.{H+2lc(Exv)}. (36)

This result is again consistent with the Dirac equation. We may com-
bine this with equation (14) in order to obtain the total Hamiltonian H
of an electron in an electromagnetic field. The field is given by the field
strengths E and H or by the scalar potential ® and the vector potential
A. The Hamiltonian is

1

e, \? e 1
H= g (p+2A) —e0s 25 ek @xp). )
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SPIN-ORBIT INTERACTIONS 9

For example, this is the proper Hamiltonian for the hydrogen
molecular ion if we take the electromagnetic field as the sum of the
fields of the two nuclei and the exterior field.

Let us now generalise the Hamiltonian (37) to a molecule with N
electrons, represented by the coordinates r; and the momenta p; and
with N’ nuclei, represented by the coordinates R,. We assume that
the nuclei are at rest so that they give rise to an electric field F only.
In addition, there is an exterior field, which is derived from the
potentials ® and A and which has an electric field strength E and a
magnetic field strength H. The total Hamiltonian for the molecule is

then represented as gy _ Hy+Hy, +H,, +H,,. (38)

Here H, is the zero-order Hamiltonian

- Ls 2+e2[ 55wty ZZ"Z"’] (39)
0 2mi=1pl i=1n=1"n¢ >3 n>k Rn,k ’
Here we have introduced
r,;=r;—-1r;, r,,=1r,-R,, R, ;=R,-R,. (40)

The electric charge on nucleus # is eZ,,.
The interaction between the orbital motion of the electrons and the
exterior electromagnetic field is represented by

e e?
H, =3[ APyt s 43—y (41)
3

The spin-dependent parts of the Hamiltonian are H, ,, which is
linear in the spin operators and which is called the spin-orbit inter-
action, and H_ ; , which is quadratic in the spin operators and which is
called the spin-spin interaction. We write the spin-orbit interaction as

e
HS.O. = %ES]'.B]- (42)
with B, =H;+ [E X P;] +5 [F x p;]
+%k§j Tf,?c[(Pk_%Pj) X Ty ). (43)
The term H; ; is quadratic in the spin operators; it is called the spin-

spin interaction since it represents the interactions between different
electron spins. Its form is

By, = (@mic) T % 508 80 8) = B(ry5.80) (x5 S)
— (8me[3me) 3 X (S;.S;) d(r; ;). (44)

i §>%
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10 H. F. HAMEKA

The second sum of equation (44) is called the Fermi contact potential;
it can be derived from classical electromagnetic theory if the finite
dimensions of the electrons are taken into consideration.

The Hamiltonian defined by (38) and subsequent equations has been
derived also from quantum electrodynamics ™ by means of a relativistic
expansion. Here it is assumed that the electron velocities v are small
compared with the light velocity ¢ so that it is possible to expand the
Hamiltonian as a power series in (v/c). The first terms of this power
series expansion constitute the Hamiltonian H of equation (38). Even
though the Hamiltonian H is not complete, since there are always
terms of higher order that should be added to it, there is no doubt that
it is correct as long as v < c.

Most of the confusion in the literature with regard to the spin-orbit
interaction stems from attempts to approximate (42) and (43) for
atoms. We have seen in equation (35) that for the hydrogen atom the
spin-orbit coupling can be expressed as the scalar product of L and S.
This has led to the approximation

N
H, ~ 'Zlg(”j) L;.S; (45)
i=

for an arbitrary atom. However, if we rewrite equation (43) for an
atom, taking E and H equal to zero,

B, = (e/2mc)[(er_3— 3 'r,-_,?c)Lj— 2¥ riL
ki K+
+ E,T.';:Iic{z(rj X Pg) — (T X pj)}] (46)
o

we see what the shortcomings of this approximation are. Only the
first term of (46) leads to an expression of the form (45), namely

30. = (22m*P) X (Zri®— T r; 3) (Ly. Sy), (47)
J k+j

but it is not obvious why the other terms may be neglected. The
second term of (46) gives a contribution

H, o, = (—e}m**) % k%ﬁ, WL S)) (48)
7 7

to the spin-orbit coupling. This is called the spin-other orbit coupling
and it is sometimes taken into account in atomic theory. However
H_ , contains still an additional term

a2, = (e2[2m?c?) E 2 77 3{2(r; X pg) — (T ¥ p;)}.S;, (49)

which fits neither into (47) nor into (48).
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