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Facsimile of the last pages of the MS. of Karl Pearson’s paper on the History of Correlation
read before the Society of Biometricians and Mathematical Statisticians, June 14, 1920

(see Biometrika, X111, p. 45)
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EDITOR'S PREFACE

The coefficient of correlation has played an important part during the last fifty years in the development
of the theory of mathematical statistics and its applications. In a field where many have worked three names
may be linked specially with the development of the theory of : those of Francis Galton, Karl Pearson and
R. A. Fisher. Galton’s pioneer work may seem to us easy now, but it is just such simple first steps which
are often the most difficult to make and yet the most far-reaching in their consequences. It was Pearson
who was largely responsible for the development of the theory of correlation from these first foundations,
and for demonstrating beyond question that this new concept “ brought psychology, anthropology, medicine
and sociology into the field of mathematical treatment”. Finally, at almost his first venture into the field
of statistical theory, Fisher deduced the probability distribution of  in samples from a normal population,
and at the same time drew attention to that valuable conception by which a sample may be represented
as a point in multiple space.

The importance of Fisher’s 1914 result was at once appreciated by Pearson, who, with his characteristic
eagerness to put theory into numbers, was already early in 1915 planning the “ Cooperative Study ’, which
presented in tables of ordinates, in frequency constants and in photographs of models the varied forms
assumed by the distribution of r. To improve on the tabled ordinates had probably long been Pearson’s
plan, but it was not until 1931 that he suggested to Miss David the computation of the tables of the
probability integral now published in this volume. In the meantime Fisher had suggested the very useful
logarithmic transformation of », which enables the probability integral to be obtained from tables of the
normal function with an accuracy sufficient for most common purposes. Nevertheless, in Pearson’s view,
however useful an approximation might be, it was desirable that for a statistical measure as important as
the coefficient of correlation there should be available fundamental tables which would enable the prob-
ability integral to be determined with a considerable degree of mathematical accuracy for any size of
sample, n, and any population correlation, p.

While accepting this view the present editor is well aware that the ideal of a mathematically accurate, all-
embracing table, has not been attained. Karl Pearson’s hope that it would be possible to interpolate
accurately up to n = 1600 from a framework of tables at n = 25, 50, 100, 200, 400, 800 and 1600 was
not fulfilled, and it has been necessary to rest content with a more restricted objective.

Miss David has loyally completed a difficult task whose solution in the region of high # and p proved
increasingly elusive. She has made two special contributions of her own: (1) a scheme of charts based on
the tables which, for the range they cover, provide a more comprehensive and useful picture of the relation
between 7, p and n than is elsewhere available; (2) an introduction in which she has tried, with, I believe,
no little measure of success, to link together a number of illustrative examples with a simple statement
of the principles by which the theory of probability may be used as a guide in drawing inferences from
observation.
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vi EDITCR’S PREFACE

Recent developments of theory, coming in response to a need for the solution of new types of problem,
have laid emphasis on a technique which deals with regression rather than correlation coefficients and
considers the apportionment of the covariance or product sum, X (x—Z)(y—7), into parts that may be
associated with different factors determining variation. But however important these new conceptions
may be, the product-moment coefficient of correlation is likely always to have an essential part to play in
the application of statistical method. When two variables are approximately normally correlated—and
there are good reasons for supposing that there is considerable latitude in the stringency of this approxi-
mation—the coefficient by itself provides a completely adequate measure of the intensity of association.
Lying between —1 and + 1 and being independent of any units of measurement, in fact a pure measure of
correlation, r has a direct and simple appeal. In providing tables and charts which deal with the relationship
between 7, p and n we are not, I feel certain, merely toying with an interesting historical relic of the past.

E.S.PEARSON

DEPARTMENT OF STATISTICS
UNIVERSITY COLLEGE
LONDON

February 1938

Editorial Note to 1954 re-issue. We are indebted to Dr A. K. Gayen for pointing out certain errors in
R. A. Fisher’s original formulae (7), (8) and (9) (p. viii) and for computing the consequent corrections to
the columns headed Approximation I and II in Table VIII (p. xxxii).
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INTRODUCTION
SECTION I. INTRODUCTORY

Throughout the following pages it will be assumed that we are dealing with two correlated random variables
2 and y for which the joint probability law is

1 _ 1 @£ 2p(z—L)(y—£y) + (V“E:)‘}
P, y) = ——— === 2A-pH% o 010y oy
27 0y0, N p?
The probability laws of z and y thus each follow the normal distribution, i.e.

1

1
— g (@—&) — W&
)= ——e 20 5 = ——g 20 L (2)
P (x) Jono, Py) N

We shall be concerned with the relation between the correlation coefficient

n

D (z—7) (y:—7)

=1 * (3)

r = 2
J 3 @22 3w
i=1 i=1

calculated from a sample of size n, randomly drawn from an infinite population represented by the normal
bivariate distribution law (1), and the correlation coefficient, p, of that population. The tables which follow
give the ordinates and areas of the curves representing the sampling distribution of » for differing values of
n and p.

The form of the distribution of » for p = 0 and any n was first given by ““Student”’ (1), while for the general
distribution for any n and p we are indebted to R. A. Fisher). ‘“Student’s” results were obtained by
empirical means, but R. A. Fisher’s proof, dependent upon geometrical argument and analogy, is
mathematically rigorous.t

Distribution of r for any n, p = 0.

(5

plrin,p=0)= -, L (4)
—[(n—2
\/wI‘(——2 )
Distribution of r for any n and any p.
n—1
_(l-—pz)T 2=t gn-2 [arccos(—pr)
I’("I”,P)—“1‘1"(7”'__—3)!*(1—1‘2)2 d(rp)“—z( g ) ...... (5)

Among other papers on the form of the distribution we may notice one by H. E. Soper 3) and one published
from the Department of Applied Statistics entitled “A Cooperative Study” 4. In the latter paper tables
were included of the ordinates of the distribution of r for given values of n and p. From these tables it was
possible to calculate by quadrature the area under the curves and therefore the probability integral of 7.

1 2 _ 1 %
- z;y G=- .
ngy y "i:ly‘

+ An alternative proof of the general distribution is given in the Appendix. While it follows closely the lines ‘of Pfofessor
Fisher's proof the distribution is reached by means of algebraic transformations. It is hoped that the proof.' in this f?rm
will be of use to those who are unable to visualize a solid figure. For an elegant proof using characteristic functions
see S. Kullback, Annals of Mathematical Statistics, v, 4 (1934), pp. 263-305.

* Z and 7 denote the sample means, i.e. z=

PCC U
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viii TABLES OF THE CORRELATION COEFFICIENT

This method of quadrature was the only one by which a precise measure of the significance of r could be
obtained until the publication of an important paper by R. A. Fisher (5), which contains the now well-known
transformation of  referred to below.

Fisher showed that by a suitable transformation of  and p the distribution curves of r could be trans-
formed approximately into normal curves.

Write Z = %log(i;_{_—:); {=tlog (%i—ﬁ) ...... (6)
From p (2’ | n, {) we obtain the moments in series:
Mean (z’)=€+2(np—l){1+45(1—:-f21)+“'}’ ...... {7)
"5’_ni1 {1+2T;_”21)+22£(2”3§p4 } """ ®
Bl=(—nf6—1)3+ o
ﬁz=3+%+——*4?:p_2;)3p4

It is seen that, provided n be of reasonable size, 2’ is approximately normally distributed. Therefore
instead of calculating the areas of the distribution curves of 7, the problem can be put into terms of the
area of the normal curve. This transformation is simple and, as will be seen later, it gives accurate results
over the whole range of values of p and r.

The idea of constructing tables of the probability integral of » was suggested to the present writer by
Karl Pearsonin 1931. It was his desire to complete the series of extensive tables, calculated in his laboratories,
associated with the fundamental tests of statistical sampling theory.* Itis true that R. A. Fisher’s z’-trans-
formation is sufficient for most practical purposes, and is very simple to apply when » is large enough for us
to take the expectation of 2’ as { and the standard error as 1 /x/ n— 3. Nevertheless it is the function of a
basic table, such as that given here, to form a standard against which the adequacy of approximations may
be judged. This table should also be of some permanent value in providing a point of departure for the
construction of useful working tools such as the charts which have been included in this volume.

SECTION II. CONSTRUCTION OF THE TABLES

Separate tables are given for sizes of sample from n = 3 to n = 25. For each size of sample ten distributions
of r have been tabulated for values of p = -0, 1, -2, ... -9, each probability integral and ordinate being accurate
to five decimal places. Tables are also given for n = 50, 100, 200 and 400 and a method of logarithmic inter-
polation is employed to obtain any intervening n. It was originally intended to include also tables for size
of sample n = 800 and n = 1600. A small portion of each of these tables was calculated, but the addition of
these extra values did not improve the results of logarithmic interpolation. In view of the labour involved
(no ordinates of the curves had been calculated previously), it was decided to omit them.

When these tables were begun some time was spent in searching for a suitable method or methods by
which the probability integral might be obtained. It would be superfluous to state these in detail, but it
may be mentioned that the fitting of Pearson curves to the ordinates already tabled was carried out. This
method had to be rejected, since the results obtained did not reach the required standard of accuracy.
In 1932 F. Garwood () gave exact formulae for the probability integrals, but his results were expressed
in terms of the ordinates, which themselves were only tabulated to five decimal places, and therefore the

* Most notable among these are the Tables of the Incomplete Gamma- and the Incomplete Beta-Functions.
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INTRODUCTION ix

areas calculated from his formulae had also to be rejected. Quadrature was the only method which gave
accuracy, and it proved the simplest to use. A suitable quadrature formula was found and this was used

throughout.
Case p = 0.
The probability law of r for any n, when p is zero, may be written
")
pr|n,p=0)= —-——(1 ) (10)
Jal —2
2
Write (1 +7) = 2w; then
+1 = Lia+n T T ) ...... (11)
" peine -0

Or, alternatively, write (1 —72) = z; then

Jilp(r]n,p=0)dr 3, —r?-( ,%) r—ve,

¥1 = "2
flp(rln,P=0)d7 1-31,_ ,2( 5 %) r+ve.

It is seen that the probability integral of (10) can be transformed into either of two incomplete B-function
ratios. Quadrature was used to obtain the probability integral and the results were checked from the
B-function tables.

Case 0<p< +1.

The method of quadrature used throughout to construct the tables is that due to Gregory (see for e.g. (7).
If 2y, 2y, ... 2, Tepresent the ordinates of the curve, f(x), at equal distances A apart, and A has its usual
meaning as a difference symbol, then

1 (%
Zf f@)de = [§zp+ 2,4+ 20+ ... +2, o +2,  + 32,1~ 75 [A%, p—1—A20] — 35 [A%, 4+ A%]
S e
~ 755 [A%,_3— A%,] — 15 (A2, + At2o] — 55180 [Asz — %] — 33157 [A%, ¢+ A%] - ... ete.

Forrmula (13) as quoted appears to entail much laborious calculation. If, however, we replace the
differences by ordinates, i.e. if we write

= 2 - —
Dz, s =2p=2, 4, A%, p=2,+2, s—22,,,
and so on, then the formula is at once simplified and can be written in such a way that a minimum of calcu-

lation is necessary.

Gregory’s formula (1) (up to and including sixth differences).

;L : f@)de = [§zg+ 2+ ... +251+32,] +0-471,429 [z, 5+2,]
—0-195,776 [z,+2] —0-260,607 [z, 4+2] (14 a)
+0-460,384 [z, ;+7] +0-082,474 [z, 5+ 2]
—0-546,536 [z, _o+72,] —0:011,367 [2,_g+ 2]
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x TABLES OF THE CORRELATION COEFFICIENT
Gregory’s formula (i) (up to and including eighth differences).
1+
z “f(@)dx = [3zo+ 21+ on +251+ 32p) —1-140,564 [z, _4+2,]
Ze
—0-213,025 [z, +2,] +0-720,944 [2,_s+725)
+0-589,020 [z, ;+2] —0-297,855 (2, g+2%]  -..... (14 6)
—0-964,015[2,_, +2,] +0-072,497 [2,_;+2,)
+1-240,890 [2,_5+2] —0-007,893 [2,_g+72]

The simplicity of either of these formulae can be seen at a glance. Given the ordinates of the distribution
of r for a fixed p and n, we first ascertain the chordal areas from z, to each succeeding ordinate. The corrective
term involving 2,2, ... 2, OF 24,2, ... Zg, is next calculated, this being constant for the given distribution.
There is now left only one calculation for each probability integral required. Either formula (14a) or (14b)
was used throughout. The aim has been to provide tables of the probability integral which would be correct
to five decimal places and it is hoped that this has been achieved. It is possible that in some cases the figure
in the fifth decimal place may be one unit wrong. If this occurs it will be due to the fact that the ordinates
from which the probability integral is obtained are themselves only correct to five decimal places.

The tables of ordinates published in ““A Cooperative Study’” were the foundation of the present tables.
The values of the probability integral corresponding to these tables of ordinates were completed in 1934,
but when examples came to be worked out from them, it was found that the differences were too large to
allow of accurate interpolation. Accordingly more ordinates, and therefore more values of the probability
integral, were calculated as it was found they were needed, and this accounts for the somewhat ““lopsided”
character of the table. Not all the ordinates which were calculated have been included. It is felt that the
tables of ordinates as printed will give a sufficiently reasonable idea of the shape of the curves, and that
interpolation between the ordinates is adequate for all practical purposes.

Calculation of Ordinates

Two methods were adopted for the calculation of the ordinates which were interpolated between those
already published in “ A Cooperative Study”’. It is known that

_ 1-=p? 1 prarccos (— pr)
e A (O I

_(1=p2 3pr + (14 2p%r%)arccos(—pr)
Vo= \a= ey (1—p2r2)t ’

where y,, is the ordinate of the curve p (r | n, p) for n = n,.
Hence by repeated application of the recurrence formula

Zn—l n—1
Yniz = P 1K1yn+1+n 52 Yn>
prl—p21—y2 (1—p?) (1 =72
o =

where Ky = 1= it s 2 = 1= pir?

3

it was possible to obtain the ordinates for succeeding values of n, ranging from 5 to 25, for a given r
and p. Where isolated ordinates were required the following formula was used:

Yn = QT‘_‘—(I_ 2)‘X(P’7‘)[ d)l +i*<é21_)2+ ¢31)3+(n 9_541)4_*_ ] s
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INTRODUCTION xi
where log x (p,7) = — (n—1)log x; —1og xa,
B 1—pr _ N2Zr{(1-p¥) (1 -
(e A R (e
rp+2 (3rp+2)2 5{15 (rp)®+ 18 (rp)2— 4 (rp) — 8}
and b=Tg =g k= { 1024 ’
3675 (rp)4 + 4200 (rp)® — 2520 (rp)2 — 3360 (rp) — 336
$e = 32768 '

This last formula is only approximate, and was originally intended to be used for n > 25, but by checking
against the true results obtained from the recurrence formula, it was found to be reasonably accurate,
even for » as low as 10,

Checks

The differences of each table of the probability integral were found on completion, and this process was
sufficient to detect any gross errors which were made. A closer check presented and still presents more
difficulty. In the main, panel-area formulae were used to check differences between successive tabled areas.

Panel Area between z_; and z, (5 ordinates).
f z f(@)de = %6 [—192_,+346z_, + 4562y — Tdz, +112,]. ... (15a)
Panel Area between z, and z, (6 ordinates).
f : f@)de = ﬁh@ [4752y+ 14272, — 1982, + 4822, — 1732, + 272,]. ... (15b)
Panel Area between z, and z, (8 ordinates).

2y h
f f(@)di = oo 3679920 + 1398492, — 1217972, + 123133z, — 885472, + 414992 — 113512, + 13752,].
2

In cases where there was disagreement between the results obtained from formulae (14) and formulae (15),
it was usually found to be because formulae (15) did not include enough differences, and the result obtained
from (14) was allowed to stand, after being carefully checked by both formulae (14). It is, however, too
much to hope that tables of this size will be completely free from error, and the writer will be grateful for
notification when any errors are found.

SECTION III. INTERPOLATION. METHODS AND ILLUSTRATION

For very many purposes modern statistical method calls for little more knowledge of a probability integral
than a tabulation of the various “significance levels”’, and for those who wish only to use these levels, charts
are published at the end of this volume. Sometimes, however, it is necessary to obtain a probability by
interpolation, so the interpolation formulae which have proved most accurate will be stated briefly. These
formulae are general adaptations of those already given by Karl Pearson ). The calculation is straight-
forward but in most cases somewhat laborious.

Suppose that for a given sample of size 7, it is desired to find the probability integral z,, for given p,
and ry. It is simplest to set out the ordinates used in a diagram (see Fig. 1).

Using first differences.
Zoy = Pzo 0+ PXz0 1+ 02y o HOX21 . Ll (16)
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xii TABLES OF THE CORRELATION COEFFICIENT
Up to and including third differences.
2gy = {1+ 5 (06 + x3h)} {b (P2o,0+ x20,1) +0 (21 0+ x21,1)}
— 30 {(1 +¢) (21,0 X2=1,1) + (1 +6) (b2, 0+ X22,1)}
=5 {(L+) (b2g, 1+ 021, 1)+ (L+x) (B2, 2+ 021,0)  woeee (17)
1llustration.

Given n = 20, p = -277, r = 185, what is the value, by interpolation, of

+185
f pr|n=20,p=-27T)drt . (18)
-1
Za,0 Zan
it
/7 AN
A Y
//, AN
V4 \\
/,l, \\\
/ Z(), Z N Zo
ZO,—I" _O_ ----- r=—- 0,1 \‘ 0,2
1 i
| | 0 | i
1 X ! i
| S S |
! ! 1 ] i
i i ' i |
" ! i ! ]
1 ' 19 ! i
1 1 1 i i
i l‘_ } | 1 .
Z],"l«\ Z ------- k--"--Z“ /‘ Jl’2
N 1,0 1,1 s
N ’
\ /
\\ /,
AN /
N v
N /7
N, ’
) <
Z3,0 Za
Fig. 1.

In order to test the accuracy of the interpolation formulae (16) and (17), ordinates of the distribution of »
for n = 20 and p = -277 were calculated, and (18) found by quadrature. This was found to be -33007. The
values of z required for interpolation are:

p=-1 p=-2 p="3 p=-4
r=-10 -32570 -18188
r=-15 57957 40536 24280 11854
r=-20 66144 -49060 31482 -16617
r=-25 57806 -39668

Here 6 = -7 and y = -77. Applying (16) we see that

+-185
f p(r|n =20, p=-277)dr = -336785,

+185
and using (17), f p(r|n =20, p=-277)dr = -33021.
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INTRODUCTION X1ii

Linear interpolation as in (16) is seen to be a rough approximation, the interpolated value differing from the
true value in the third decimal place; but the result obtained from (17) is reasonable, there being a difference
of only -00014 between the true and interpolated values.

Formula (17) is for use in the middle of the table. We may quote one further formula, which will be of
use when interpolating on the border of the table. For this, the scheme will be:

zZ Zo,1
£0,0 2o,
Zy,0 Z]Q] Z1.2 AR
rz_ _____ _}____? ’ .1,5
i P
-

]
i ]
:____X___E_l/’__,
i |9 :
oo ne A b ° )
Z,0 Zon Zyy Za,3
° °
Z3,0 Z3n

Fig. 2.
and zg, is obtained by substitution in the following:
2gy = F{1+30(1+¢)— 30 (1+0)} {thzg o+ x21, 1} +O{L + 3P (1 +0)— 3¢ (1 + )} {h2y o+ X?2,1}
~dxd{(4+¢) [$21 0+ 022 01 — 3 (3+4) [d2y 1 + 02y 11— dxp {3 (2+ ) [Pz o+ bzy o] — (14 ) [d2y 5+ 0z, 31}
— 40 {(1 + ) [¥zp o+ x20,1] + (1 +0) [23 o+ Xx25, S (19)

Using (19) on the same figures as before, the tabulated values required are:

32570 -18188
40536 -24280 11854 04383
49060 -31482 16617 ‘06696
57806 39668
+185
and we get [ pr|n=20,p=-277)dr = -32979,
-1

Y

differing from the true value by -00028.
These three formulae should be enough for interpolation into all parts of the table where the specific
size of sample is given.

PCC b

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521124126
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-12412-6 - Tables of the Ordinates and Probability Integral of the Distribution of the Correlation Coefficient in Small
Samples

F. N. David

Frontmatter

More information

Xiv TABLES OF THE CORRELATION COEFFICIENT

Possibility of Graphical Interpolation
Formulae (17) and (19), while giving accurate results, often need laborious calculation in application.
Graphical interpolation is possible if the probability integral is required to be correct to two units only.
Let us consider the possibility of finding (18) graphically. Plot r along the abscissa, as ordinates take the
corresponding values of the probability integral, and plot the two curves p = -2 and p = -3, for size of sample
n = 20. Provided these be drawn on a reasonable scale it is possible to read off the probability integral
Diagram showing Graphical Interpolation for size of sample n =20

06
&
i y
r.i
0-5fHE s,
- i

0-465 {r=0185 p=0-20)17]
E
g
g T
= 0-4f
3 ]
2 .
<
2
=4
‘jf 0-333 r=0485 p=0-277
—;‘3
2 03

02925 3 (r=0185 p=0-30)

02

tf
0 0-1 0185 (3.2 03 0-4
Scale of r
Fig. 3.

N.B. -465—-2925 =-1725, -1725x-23 =-0397, -0397+-2925 = -3332.

for p = -277 and r = -185. The probability integral obtained by this method was :333, which is slightly more
accurate than the result obtained by linear interpolation by formula (16). This result is sufficiently good if
a rough guide is all that is required, and hence it is suggested that this method be used when a quick
approximation to the probability integral is desired.

Logarithmic Interpolation for n> 25
The interpolation formulae discussed previously in this section are chiefly applicable to the first part of
the table, where the size of sample is from n = 3 to n = 25. The second part of the table gives the ordinates
and areas for samples of sizes 50, 100, 200 and 400. We shall now consider interpolation for the probability
integral in this second part.
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Consider Lagrange’s mid-point formula for the graduation of four ordinates at equal distance, h, apart(9).
Suppose the four ordinates to be z,, 2;, 2,, z3. Then if z,, the required ordinate, be situated, as shown in
Fig. 4, at a distance hx from the foot of the first ordinate, 2,

2, =29+ 3 {2 [(23—22) — 2 (22— 21) + (21— %))]
=322 [(25—25) — 3 (23— 21) + 2 (21— 2))]
+x[2(23—29) T (2g—2)+ 1 (2, —20))}. ... (20)
We may use this formula in order to construct tables for large values of n. The method is as follows. Using

a logarithmic scale for n it is seen that the probability integral is tabled at five equidistant values of this
new variable, corresponding to an argument interval of log 2, i.e. at

log 25, log25+log2, log25+2log2, log25+3log2, log25+4log2.

H

/ '
/ i

2 2y za:: 2 Zg

1

e——— h ——— :

1

< hx >

Fig. 4.

If then, for example, it is wished to interpolate for n = 160, the values of z,, 2,, 2,, 2, to be inserted in {20)
will be the values of the probability integral at » = 50, 100, 200 and 400, and

z = (log 160 —log 50)/log 2 = 1-678,072.

Both for illustration and as a test of the accuracy of (20), the probability integral for p = -8 and n = 160 is
given below for several values of . The exact result obtained by quadrature from ordinates calculated from
the formulae of p. x is also given.

Table I. Probability integral for p = -8

n 5 < 160 169
r 80 100 200 400 (by four-point) (exact)
-60 -00237 -00005~ — — 00000 -00000
-85 -01146 -00087 — — 00000 -00003
70 -04945 -01023 -00054 — 00168 00172
75 17732 10000 03643 00582 05422 05388
-80 47693 -48387 48864 -49200 -48729 -48729
-85 -84835+ -93508 -98547 -99909 -97323 -97402
90 -99374 -99986 1-00000 1-00000 1-60000 1-00000

It will be seen that the agreement between the exact values and the results of applying (20) is fairly good.
These results are again used in Section V, where they are compared with the results of applying the z’-trans-
formation.

If the probability integral is required for a value of p lying between the tabled values, it will be necessary
to construct two such tables as that given above for the tabled values of p lying immediately above and
immediately below the desired value. These obtained, the method of graphical interpolation suggested on
p- xiv will give the required value correct to two decimal places. The writer is of the opinion that the increase
in accuracy would be very little if four tables such as the above were calculated and interpolation by second
differences employed.

It may be that the probability integral for a given p, r and large n will be wanted quickly and approxi-
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mately. To this end diagrams, numbered I-X, have been constructed and will be found at the end of this
introduction. A separate diagram is given for each value of p which is tabled. = is plotted along the abscissa
and curves are drawn of the probability integral for given values of . Hence for a given n and p, the values
of the probability integral for  at an argument of -05 can be read off immediately. For a value of p lying

between the tabled values the probability integral for the p lying immediately above and immediately below
may be found, and the method of p. xiv employed.

SECTION IV. USE OF THE TABLES AND ILLUSTRATIONS

In whatever field he is working the applied mathematician is concerned with bridging a gap between a con-
ceptual mathematical model and the data of his experience. Thus the mathematical statistician has need
to consider how a precise but abstract theory of probability may be employed most usefully to draw in-
ferences from observation. There may be differences of opinion as to the best methods of answering some of
the questions discussed below, but there should be general agreement on the importance of defining with
precision the terms of the questions asked and the principles adopted in answering them. For this reason
it has seemed well to introduce the illustrations of the use of tables and charts given below with a somewhat
formal statement of the guiding principles which the writer has followed in their solution. At the same
time no claim is made that the types of problem illustrated are exhaustive, nor that the approach to their
solution is unique; the problems discussed might certainly have been formulated in a different way, the same
tables or charts being used in their solution.

The problems of practical statistics which call for the introduction of the theory of probability will almost
always be found at the root to be concerned with the relation between what may be termed the collective
character* or characters of a sample, and the collective character or characters of the population from
which the sample has been randomly drawn. It is rarely possible to determine s collective character directly
from a knowledge of the population, for in most cases the populations studied are either infinite or very
large, and even if it were possible the question would arise as to whether we are justified in spending much
time and labour in so doing. In practice we take our randomly drawn sample, and use it to obtain infor-
mation about the population we are studying. Provided the sample is of reasonable size we may do this
with a fair degree of accuracy.

Thus if the collective character under consideration in the population is the coefficient of correlation, p,
between two variable characteristics z and y, we may wish to obtain answers to such questions as the
following:

1. Are the observed data in a sample consistent with the hypothesis that in the population

(i) p=po, (i) p<po, (iil) p = pg,
where p, is some specified value?

2. How may the observed data in a sample be used to the best advantage in order to calculate limits p,
and p,, such that the statements

(i) pp<p<+1, (i) —1<p<p,, (ill) pp<p<p,,
regarding the unknown value of p in the population sampled may be made with given degrees of confidence?
3. Suppose we have k (k> 2) independent randomly drawn samples. Are the observed data consistent with
the hypothesis that in the & populations sampled the coefficients of correlation, p,, p,, ... p, are all equal to
(i) a specified value, p,,
(i) a common but unspecified value, p?
* As far as the writer is aware, the term “ collective character” was first used by J. Neyman in his paper “On two different

aspects of the Representative Method”, J. Roy. Statist. Soc. xcvir (1934), 561. He obtained it by translating a Russian phrase.
Applied respectively to the sample and the population it is used instead of the terms “statistic” and ‘“‘parameter”’,
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Questions 1 and 3 are concerned with the testing of a statistical hypothesis. We ask whether the data are
consistent with a specified hypothesis or not; if we decide to say “No”, we risk one form of error, that of
rejecting the hypothesis when it is true. In any precise test it should be possible to fix what is commonly
called the significance level so as to control this risk of error, say ¢, at some prescribed figure, e.g. ¢ = -01
or -05. If, on the other hand, we say ““Yes, the data appear consistent with the hypothesis”, it may never-
theless happen that the hypothesis tested is false, and that through the inadequacy of the data we have
failed to detect the fact that some alternative hypothesis is true. These two types of error cannot altogether
be avoided in testing a statistical hypothesis; if the test is arranged to reduce the risk of the first it will
increase that of the second, and vice versa. Some illustration of this is given below. Question 2 leads to
the problem of interval estimation. Here again two considerations will be taken into account; for example,
in question 2 (iii) we must consider both (a) the risk that the interval p, to p, fails to cover the unknown
value of p in the population sampled, and (b) the breadth of the interval p, to p,, which for the given
risk we should like to be as narrow as possible. In this connexion the definition of narrowness will have to
be discussed.

It is necessary to emphasize again that in the work which follows we assume that the samples have been
randomly drawn from some population in which the variates « and ¥ under consideration follow the normal
bivariate distribution given in equation (1) above. That the results will be approximately true even when

the distribution is far removed from normal is suggested by the empirical work of E. S. Pearson* and
others(10,11), but so far it has not been established mathematically.

Question 1
A sample consisting of » pairs of observations is available.

(i) Isp>p,? Here the admissible hypotheses alternative to that tested are that p < p,.

ey
S

\

plrin, P=/<;/, \

-
a*"

Fig. 5.

Fig. 5 shows hypothetical sampling distributions of » for three values of p, and size of sample equal to .

We want to test if p > py and, bearing in mind the alternative hypotheses, we may suggest the following
rule:

Reject the hypothesis tested if r < re» Where

fel
€ =f_1p(r[n, poydr. L. (21)

Accordingly, if p > py, e.g. equals p”, then the chance of rejecting this hypothesis when it is true will be <e;.
If p = p, the chance of rejection when the hypothesis is true is exactly equal to ;. On the other hand,

* E. S. Pearson, Biometrika, xx1 (1929), 856-60: ‘“The results suggest that the normal bivariate surface can be muti-
lated and distorted to a remarkable degree without affecting the frequency distribution of 7.”
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if in fact p = p’ and the hypothesis tested were false, the risk of failing to detect this is measured by the
shaded area in Fig. 5 under p (r | %, p = p’) to the right of the ordinate at r, . Clearly in the case illustrated,
if p = p’, we should be almost as likely as not to fail to detect the fact that the hypothesis p > p, was false.

(ii) Is p < py? The admissible alternative hypotheses will be that p > p,, and in a way similar to the above
we may set up the following rule:

Reject H,, the hypothesis tested, if r >, , where

+i
€ = J; p(rin,pe)dr. (22)

€s

The four charts provided at the end of this volume can be used to obtain the limits r, and r,, for
values of ¢; and ¢, equal to 005, -01, -025 and -05, and for varying values of » and p. If it is desired
to take a different probability level from those given, it will be possible to find the necessarv fioures from
the main tables.

(iii) Is p = p,? Here the admissible alternative hypotheses to that tested will be that —1<p<p, (e.g.
p=p)andpy<p< +1 (e.g. p = p"). The test we may set up will be a combination of those used in questions
1(i) and 1 (ii). We may postulate as our rule:

Reject the hypothesis tested if 7 > 7, or r <7, , where ¢; and ¢, are defined as above and
a=e=% .. (23)

where ¢ will be the chance of rejecting the hypothesis tested when it is true. It is easily seen that this risk of
rejection will be the same if ¢, is not equal to ¢, so long as

€1 + € =€ s (24)
Neyman and Pearson (12) have shown that in certain cases if we take
‘ €1 = €9,
we shall be less likely to reject the hypothesis tested when it is false, than when it is true. A test leading to
such consequences they have termed biased.* Such a situation would arise if in Fig. 5, for any curves of the
system p (7 | n, p) having p either below or above py, the proportional area included between ordinates at
r., and r, was greater than 1—e. It was decided to test whether the rejection limits obtained from the

distriL. tion of r by taking equal tail areas were biased. Following the procedure of Neyman and Pearson
an unbiased test may be obtained by solving for r, and r, from the two following equations:

fre'p(r |m,p)dr=1-¢, ... (25)
e,

_d_f'“ (r|n, p)dr = 0 (26)
& re,p ,p)dr=90. ..

This solution has been investigated and a note on unbiased limits for r has already been published (13). We
may state here the conclusion which was reached. It was found that the rejection limits obtained by taking
unbiased limits for r differed very little from the limits which were obtained by taking equal tail areas from
the r-distribution, and that for all practical purposes these two sets of limits could be regarded as coin-
cident. This result is not surprising when it is remembered that by R. A. Fisher’s 2’-transformation the
distribution curves of r are transformed approximately into a series of normal curves. There is a slight
error introduced by this transformation, and this is the reason why the unbiased limits and the equal tail-
area limits are not quite coincident, but this error is usually so small as to be negligible.

* The word ‘‘biased”” throughout the next few pages will be used in Neyman and Pearson’s sense.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521124126
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-12412-6 - Tables of the Ordinates and Probability Integral of the Distribution of the Correlation Coefficient in Small
Samples

F. N. David

Frontmatter

More information

INTRODUCTION Xix

Ilustration. Question 1. Case ().

In the production of a certain aluminium die-casting previous experience over a long period of time
had shown a manufacturer that two measurements of quality, namely tensile strength (x), measured in
pounds per square inch, and hardness (y), measured in terms of Rockwell’s E, were both approximately
normally distributed. Since the determination of x involves the destruction of the casting, it is desired to
use the character y as a measure of strength in its place, and for this purpose it is considered essential that
the correlation, p, between the value of x and y in the same specimen should be at least as high as +-80.
Tests of « and y on 25 specimens are available, giving a sample correlation, », of +-641. Should it be
concluded that the correlation between the characteristics in this type of casting is insufficient to justify
the use of y in predicting strength ?

In statistical terminology we see that it is necessary to test the hypothesis that p > + -80, the admissible
alternative hypotheses being that p < + -80.

Using the tables we find that P{r<-641|n = 25, p = -80} = -04584.*¥ From Charts I, II, III, IV,
respectively, we see that using the

-05 limit we reject the hypothesis tested if 7 is less than -65,

-025 . . r . -605,
'01 2 3 r b4 .55)
-005 ., ., r . 51.

It is therefore seen that, if in the sampled material the correlation between the two characters was 80 or
more, so small a value of r as that observed would be expected to occur through chance sampling fluctuations
less than once in 20 times, when testing 25 specimens. On the assumption that the specimens tested are a
random selection from the material, the manufacturer would feel very doubtful whether the correlation
between x and y was high enough for his purpose, although he might be well advised to examine a further
sample before rejecting the hypothesis, p > + -80.

Illustration. Question 1. Case (i41).

Let us suppose that in dealing with the same material as in Case (i) the manufacturer had found from
past experience that p = +-63, and as a routine test for control of quality he proposed that in the future
random samples of 20 specimens should be drawn from each batch of several hundred castings, x and y
measured, and the correlation between them calculated. What control limits r, and r, should he specify in order
that he may be reasonably certain of detecting whether p for the batch had altered appreciably from + 631

We shall assume (i) that the batch is so large that we may regard the sample as being drawn from an
infinite population, (i) that within the batch the quality of the material is homogeneous. By making r,
and r, close to p, = +-63, the manufacturer would reduce the risk of passing material for which p was
much greater or much less than +-63. This he might do if he were trying to establish a rigorous control.
But if r, and 7, are too close to p, = + 63, he would run a second risk in that he would often reject material
which was really satisfactory. This would be possible owing to the wide variation in 7 for samples of 20.
Therefore, before setting up his two limits 7, and 7, he must decide upon the risk he is willing to undertake.
We shall suppose that he is content with the control if the limits chosen entail a risk of rejecting satisfactory

material 5 times in 100, i.e. 5 times in 100 he will run the risk of rejecting the hypothesis p = p,= + 63,
when it is actually true.

We obtain the limits r; and r, from Chart IT, which shows that
P{(-215<r<-845)|n = 20, p = +-63} = -05.
The two limits for r that he should therefore set up will be r, = +-275, r, = +-845.

* This useful shorthand is often found in statistical papers. Put into words it means “‘the probability that r is less than
or equal to -641, given that n = 25 and p = ‘80, is equal to -04584”".
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Question 2. To determine a confidence interval p,, to p, for p.

Certain aspects of the problem of estimation have recently been advanced considerably by the work of
R. A. Fisher(14) on fiducial probability and J. Neyman (15) on interval estimation. The procedure and ter-
minology developed by the latter will be followed, but from the practical point of view there is no sub-
stantial difference between the results reached by either approach. For the sake of clarity the problem has
been divided into three classes.

Case (i). To determine p, so that we may make the statement p, <p < + 1 with a given degree of confidence.
If we turn to Chart I, with which is associated a confidence coefficient of 90, and as an illustration consider
the lower of the two curves marked n = 10, we know that, whatever be the value of p in the sampled popu-
lation, we shall expect in repeated sampling to find that 5 out of 100 samples of 10 give a value of r falling
below this curve. Thus if we consider the set of points (r, p), which we may meet when drawing samples of
10 from normal bivariate populations, we should expect 5 per cent. of these points to lie below the lower
curve, and 95 per cent. above it. It follows that if in general, in a given sample of size n = n,,

+1 L
i
1
]
]
]
|
B < e -] M__..?\
] t
2 ?
1] '
. 1
i P
g s
! :
Q ] '
3 ' :
2 0 . Q%
£ o0 |
| Ps
1 §
Ny :
// A -------------- - N— -X
N []
1
]
'
[}
]
!
1"41\:0 :
]
i
1 i
- K +1
Scale of r
Fig. 6.

we find the sample correlation coefficient » = r;,, we may adopt the following procedure to determine the
limit p,:

Plot the point (ry, p=0) and draw a line parallel to the axis of p through this point. Suppose this line
cuts the lower curve for n = n, at the point A. Draw the line AN perpendicular to the axis of p, cutting
the axis in the point N. Then @N = p,, and we may make the statement

ppS<p<+1 @7)
with a degree of confidence measured by the confidence coefficient of -95. We may express this by saying
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that 95 times in 100 we shall expect the interval p, to +1-00 to cover the true population value. The
confidence coefficient represents the probability that the statement (27) will be correct if we follow this
procedure. If Charts I, IIT and IV are used the confidence coefficients will be -975, -99 and -995, respectively.

Case (11). T'o determine p, so that we may make the statement — 1< p < p, with a given degree of confidence.
In case (ii), given 7, as in case (i), continue the line through (r,, p=0), which is parallel to the axis
of p, until it cuts the upper of the two curves for n = n,. Suppose the point of intersection to be B,
and draw a line BM, perpendicular to the axis of p, and cutting this axis in the point M. Then
MQ = p, and we may associate with the statement

-1<p<p, (28)
a confidence coefficient of 95 if Chart I is used.

Case (i13). To determine p, and p, so that we may make the statement p, < p < p, with a given degree of confidence.
Using Chart I, and the pair of curves for n = n,, where n, is the specified size of sample, we know that
of the set of points (r, p) that may be met in our statistical experience when randomly drawing samples of
size n,, 90 per cent. will fall within the lozenge-shaped belt between the two curves, 5 per cent. above the
upper curve, and 5 per cent. below the lower curve. Hence if for an observed value of r =7, in a
sample we determine, as in Fig. 6, the points 4 and B, M and N, and therefore p, and p,, where
py = N@Q and p, = M@, we may associate with the statement

PeSPSPy (29)
a confidence coefficient of -90. Intervals with confidence coefficients of 95, -98 and -99 can similarly be
obtained from Charts II, III and IV, respectively.

In the present type of problem it is clear that we could obtain an infinite variety of belts provided that
(24) holds. We should have the same risk of error in making statement (29) if the two curves of Fig. 6
were based on those values of r,, and 7. obtained by a consideration of (21), (22) and (24) instead of those
obtained from (21), (22) and (23). For instance, a belt with confidence coefficient -90 could be obtained by
taking €; = 02, ¢, = -08, as well as with ¢; = ¢, = -05.

One such type of belt has been discussed in the note on unbiased limits for r, to which we have already
referred (13). It has been shown by J. Neyman (15) that, in the case of certain skew distributions, such “un-
biased” belts have definite theoretical advantages over those obtained by taking equal tail areas. In the
case of the r-distribution, however, evidence given in the paper(13) suggests that the equal tail-area belt
and the unbiased belt may be considered as coincident for all practical purposes.

Ilustration.

The width of span (z) and length of forearm (y) of 20 males have been measured, and the correlation
between these two variates is found to be +-550. Assuming that width of span and length of forearm are
both approximately normally distributed, what interval will cover the correlation coefficient between z
and y in the population?

The sample correlation coefficient is +-550. Using Chart I and the pair of curves for n = 20, we see that
we may make the statement 21<p<-T6,

with a degree of confidence measured by a confidence coefficient of -90. This is equivalent to saying that in
repeated sampling nine times out of ten we expect the interval -21 to -76 to cover the true population value.
We may decide that the risk of the interval failing to cover the true value once in ten times is too
great. Accordingly we would turn to Chart IT and make the statement
P{-160<p<-785} = -95.
Here the risk of failing to cover the true population value by the interval -160 to -785 is reduced to -05,

but it should be noticed that in reducing the risk of error we have increased the breadth of the interval.
PCC c

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521124126
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-12412-6 - Tables of the Ordinates and Probability Integral of the Distribution of the Correlation Coefficient in Small
Samples

F. N. David

Frontmatter

More information

xxil TABLES OF THE CORRELATION COEFFICIENT

We should naturally like the interval for p to be as narrow as possible, but we can make this interval narrow
only by increasing the risk of being wrong. It is therefore necessary to balance the consequences entailed
by a wrong decision against the advantages of the narrow interval.

The sample we are discussing was in fact randomly drawn from a population of 10,000 males. The corre-
lation between width of span and length of forearm for this population was found to be -758.

Question 3

In attempting to use any single comprehensive criterion to test hypotheses regarding the values of un-
known parameters in more than one population, we find that little progress has so far been made in the
development of such tests except in the case where the sample estimates of the unknown population para-
meters are normally distributed. If, for example, we have samples from two populations with correlations
p; and p,, the classical method of testing the hypothesis that p, equals p, would be to caleulate the ratio
of the difference between the sample correlations to an estimate of the standard error of this difference, i.e.

7y —T2
(A-r22 (1—r}?
n—1 ng—1

and refer this ratio to the normal probability scale. This procedure is adequate when dealing with large
samples, provided the hypothetical common value of | p | is not too near unity. It may however be extremely
inaccurate in other cases. The sampling distribution of (30) is unknown, and its form would be extraordinarily
difficult to determine, since r, and r, follow different non-normal distributions, depending on the value of
ny and n, and that of the unknown common p. Further, even if the sampling distribution were obtainable,
the test might be less efficient in detecting true differences between p; and p, than other tests which might
be devised.

R. A. Fisher’s z’-transformation has the great practical advantage that it provides, instead of r, a quantity
2" which is approximately normally distributed, and whose standard error is practically independent of p.
Thus when we have samples from several populations, we may test hypotheses regarding the population
p’s by applying to the sample 2z"’s the appropriate tests from ‘“normal theory”. Since, however, the dis-
tribution is not precisely normal or independent of p, some approximation is entailed by such a procedure
and it is therefore important to note that for one type of problem, such as Question 3 (i), the present tables
provide an exact test.

Question 3 (1)

k samples, containing respectively n,, n,, ... n; observations of two correlated variables # and y, have been
drawn from k normal bivariate populations, with unknown correlation coefficients p,, p,, ... p;. Are the data
consistent with the hypothesis that

PL=Pes= ... =pp=Po (31)
where p, is some specified value?

In order to determine the best form of test to use, it is necessary to decide upon the kind of alternatives
to (31) that appear most likely, having regard to gencral considerations of the type of problem dealt with.
If the p’s are not all equal to p; we might have grounds for thinking (a) that they would have some
other common value differing from p,, (b) that they might be unequal but all >p, (or <pg), (c) that
they might assume any different and unequal values whatsoever. In practice it is evident that we cannot
be certain of the class of admissible hypotheses alternate to those tested; nevertheless we shall generally
have a fairly clear idea of the form of departure from (31) which it is most important for us not to

overlook. Consequently we shall prefer to use that test which is most likely to detect such a departure if
it exists.
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Consider first the alternative (c) mentioned above. Since p, is specified in (31), for each sample we may
obtain the probability integral of r, given =, for p = p,. For the {thsample (¢=1, 2, ... k), define =, as follows:

N

Tt
= 2f 1p(r]n:n,, p=p,)dr, if r;< median value of r*

+1
m o= 2J p(r|n=mn, p=py) dr, if r,> median value of r
Tt

Hence 0 <7, < 1. Further, if the hypothesis tested is true, the k values of 7, will be independent and each
equally likely to assume any value between 0 and 1. We may now follow the suggestion of R. A. Fisher6)
and Karl Pearson (17) and take P

=mmy.TEy (33)

as a criterion to test the hypothesis (31). It will be seen that P has a maximum value of unity and tends to

zero as the values of r, diverge from p,,.
As Fisher has stated, and as follows also from Karl Pearson’s work, if the hypothesis tested be true

x> =-2log, (P (34)
is distributed as in the standard x? distribution

P(x*) = -—2’/2; ( g)

with degrees of freedom, f, equal to 2k. Thus a simple test of the hypothesis (31) is available, provided that
the values of the m,’s can be calculated. The present tables and charts make such calculations possible.

In considering alternative (b), we see that the hypothesis tested is that p,; < p,y, and the admissible alter-
native hypotheses will assume that there is at least one population, though which one cannot be specified,
for which p;> p,. In this case we define =, as

(x?)112-1 e—ix?

+1
m=f pr|n=mn,p=py)dr, L. (36)

LG

so that 0<m <1 (t=1, 2,... k), and if the hypothesis tested is true the =,’s will have the same properties
as before. Thus the criterion P will be as in (33) and will be related by the transformation (34) to the y?
distribution with 2k degrees of freedom. It will be noted that P will now approach zero as the differences
7~ po increase, i.e. as it becomes less likely that the hypothesis p, < p, is true.

Karl Pearson suggested a slightly different procedure to test the significance of (33), the hypothesis of
alternative (b). He wrote

P{/\zz\n}=PM=I(n—1, - 1_8251_0’1"_), ...... (37)
n logyge

where I (p, u) is the function given in Tables of the Incomplete Gamma-Function, A, is the criterion (33)
and n is the number of samples which are tested. Tables of P,, were calculated for different values of
—log;pA, and 7, and may therefore be used to test hypothesis (31). This process is, however, essentially
the same as that proposed by R. A. Fisher. Since

2
I—P{x2>x2}=1—Pz(say)=I( (N -3), ﬂ"—_.—) ...... 38
if we calculate P,» for N = 2n+1 and y% = — ll—oogg_l%’ then from (37) and (38)
10
P{AzN}=1-Pp. L (39)

* For very small samples median » will of course differ somewhat from p,.

PCC
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1t should be understood that these two tests are precise, in the sense that the sampling distribution of
the criterion used is known if H,, the hypothesis tested, be true, so that the risk of rejecting H, when true is
exactly controlled. How far such tests are biased, in the sense of Neyman and Pearson’s terminology, or
whether more powerful tests could be found which would be more likely to detect departures of the p’s
from p,, are theoretical problems requiring further investigation.

Example 1. The following example is quoted by Tippett(8) from a paper by Tschepourkowsky (1905).
The table contains the correlation coefficient between cephalic index and upper face form for samples of
skulls belonging to thirteen races. It is desired to test the hypothesis that there is no association between
cephalic index and upper face form. Accordingly, in our terminology we shall test the hypothesis that

prL=ps=..=p=0 . (40)

where alternatively the p’s have any other values between — 1 and + 1.

Table II
Number y . ’
Race of skulls Correla.tlon f ! p(r|n, p=0) N

measured coefficient 1
Australians 66 +-089 761 478
Negroes 77 +-182 -946 -108
Duke of York Islanders 53 —-093 255 510
Malays 60 —-185 -079 158
Fijians 32 +-217 -883 334
Papuans 39 —-255 060 120
Polynesians 44 +-002 -505 -990
Alfourous 19 —-302 -1045 209
Micronesians 32 -~ 251 ‘083 166
Copts 34 —-147 203 -406
Etruscans 47 —-021 445 -890
Europeans 80 --198 039 -078
Ancient Thebans 152 —-067 -207° 415

The values of m, were calculated directly from the Tables of the Incomplete Beta- Function, by means of
the relations expressed in (11) and (12). Similar results would have been obtained by application of the
Lagrangian interpolation formula to the tables of r.

Here we see that

log P = logﬁ m = —17-174,045
- x*=—2log, P = 33-0376,  f= 2k = 26,
f=26, x*=35563, P, =10,
f=26, x*=31795 P, =20,

and hence the probability of getting a larger x* than the one we have obtained will lie between -1 and -2.
Tippett approaches the example in another way. Using equations (6) and (8) of Fisher’s z’-transformation

he finds the quantity i3
Xt =2 (m—3)(%)* = 17-26,
=1
and refers this to the y2 tables with degrees of freedom f = k = 13. The tables give
f=18,  x*=19812, P, =10,
f=18,  x*=16985, P, = 20.

© in this web service Cambridge University Press

www.cambridge.org



http://www.cambridge.org/9780521124126
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-12412-6 - Tables of the Ordinates and Probability Integral of the Distribution of the Correlation Coefficient in Small
Samples

F. N. David

Frontmatter

More information

INTRODUCTION XXV

Since here he is testing the hypothesis p = 0, the error introduced by the transformation is very slight. It is
seen that the result is comparable with the previous one obtained by using the probability integral of 7.

The results of either of these tests would therefore give us no clear grounds for rejecting the hypothesis
that there is no association between cephalic index and upper face form.

Ezample 11. Matuszewski and Supinska (19) carried out a series of experiments with streptococcus. They
measured on samples of different types of bacteria the rate of increase per hour of the number of bacteria,
and the amount of acid in 10~1mg. produced by one cell in one hour. The results of their experiments were
given in tabular form, and rough plotting seemed to suggest that the assumption of normality would be
justifiable. The present writer worked out a series of correlation coefficients, which are given below in
Table 11I.

We shall test the hypothesis* that
P P1= P2 =Pz = ..o =P11=O, ...... (41)
i.e. that there is no association between rate of increase of the bacteria and the amount of acid produced

by one cell, the alternative hypotheses being that the p’s may have any other values between +1 and — 1.
Using the tables of » we obtain f

p (r|n, p)dr for each sample and hence ,, using (32).
1

Table 111
Number of | Correlations between
. . r
Typeofbmceria | gapemens | oo |7 o0 || g
culture acid
Streptococcus Lactis 3 6 —-3945— 2195~ -4389 1-64237
» »» 4 6 +-6268 9085+ -1830 1-26245
. . 5 7 +-8276 -9892 0215+ 2-33244
Streptococcus Cremoris 6 6 —-1973 -3539 <7078 1-84991
Streptococeus Lactis 7 6 +-5015+ -8446 -3108 1-49248
»» » 8 6 —+4498 ‘1854 -3708 1-56914
’ 5 9 5 —-0878 5557 -8886 1-94871
» » 10 5 —-6396 1226 +2452 1-38952
»s » 11 6 —-0167 4875~ -9749 1-98896
» ’ 12 5 --3717 +2690 -5379 1-73070
» ’» 13 5 —+4953 -1981 -3961 1-59780

xt=—2log, P = 23926, f=2k =22,
P X2 = ’35
An alternative method of testing hypothesis (41) is that used by Tippett in the previous example. We
shall note further on in the text that a rough approximation to equation (8) is to assume that 2’ is approxi-

mately normally distributed with standard deviation equal to 1 /\/ n—3. The quantity z'vn— 3 will there-
fore be normally distributed with unit standard deviation in populations where p is zero. Hence if we have
k samples and consider the expression x
X2 = tzl (nl_ 3) 2;2:
we see that this will be distributed as x* with k degrees of freedom. The alternative method by which we
proceed is therefore clear. Converting each 7, of Table III to z by means of the relation (6), we finally
obtain 1"
x2= (m,—3)z2=11-5416, f=1F=11,
t=1
P X2 = -40.

* It would, of course, be wrong to consider that the truth of any hypothesis tested is proved or disproved when it
is based on such scanty data. The only inference we may draw would be that the hypothesis may be true, or alter-
natively, may be false, but that further experimentation would be necessary to confirm it.
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This result is comparable with that of the other method. In either method we therefore find no reason to
reject the hypothesis that there is no association between the rate of increase of the bacteria and the amount
of acid produced by one cell in one hour.

Question 3 (si)

This type of problem differs from the previous one in that now p, is not specified and the hypothesis to

be tested is that
PL=Pg= . =pp. (42)

In such cases no exact test is known, but two lines of procedure are possible:

(a) If k is large enough, we may obtain from the sample correlation coefficients, r,, some form of weighted
estimate, say r,, of the unknown hypothetical common p,, and using this for p, apply the same methods as
were described in dealing with Question 3 (i).

In a recent paper Karl Pearson (17) suggested using as 7, an approximation to the maximum likelihood
estimate of the unknown p,. The method of approximation was as follows: He calculated the weighted mean
of the first four powers of the sample correlation coefficients, i.e.

7
tgl i <
Hy = —N , where N= 3=, ... (43)
=1
and substituted them in the following equations:
PL= MK
= + —p2
e e (44)

ps = prt Pz (2 —p3) +pf (13— p})

Pa = 1+ pg (e —p3) + p3 (13— p3) + o} (g — )
ps Was his final approximation to the common p. The process could be extended to p; and pg and so on, but
moments higher than 1, would then bave to be calculated. This procedure has been tried on several examples
and found to give quite a reasonable value for p.*

Since 7, is a function of 7, 75, ... 74, the expressions =, of (32) or (36) will not now be independent, and
consequently the test based on the transformation
x* = —2log, (P)
willno longer be accurate, in the sense that in repeated sampling this y2 would not follow the distribution (35).
(b) As an alternative R. A. Fisher’s z’-transformation may be used. If it may be assumed that when
(42) is true, 2; is distributed normally about a common but unknown mean for all values of ¢, with standard
deviation l/\/m,T then k
X2 = 2:1 (m=3)(z—2"%, Ll (45)
(n,~3)7
. (46)
(n,—3)

Z
where z =

M= LM?"

-
I

1

* It is probable that this procedure was in Karl Pearson’s mind when he wrote that the present tables would ‘largely
assist the investigator to determine whether a series of correlation coefficients of samples may be assumed to have a
common origin”. See also Biometrika, xxv, 395.

t This approximation for the standard deviation is derived from equation (8). If we neglect the terms containing p and higher

powers of p we get s 3mi+8

% =3 1p

which is approximately equal to 1/(n —3).
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will be distributed as x* with degrees of freedom f = k£ — 1. Unless all the », are equal, it will be seen from
(7) that the expected values of the z; are not precisely the same, so that an approximation is involved in this
test also.

Ezxample 1. The following example is taken from a recent paper by E. S. Pearson and S. S. Wilks (20).

Table IV. Racial Correlation Coefficients for equal small samples of 20 taken from 30 races
L 7': T ]
wo | [Mpetnpdr) w | togm | n | [Mpeinpdr| w |t | n | [" peinpdr) w | lgm
+097 -2085 4170 | 1-62014 | +-219 -3853 -7706 | 1-58580 | +-178 -3100 -6200 | 1-79239
+-198 -3507 <7014 | 1-84597 | —-152 <0331 -0662 | 2-82086 | +-763 9979 0042 | 3-62325
++576 ‘9418 -1164 | 1-06595 | +-319 5637 -8726 | 1-94082 { +-101 2127 4254 | 1-62880
—-015 1008 -2016 | 1-30449 | +-310 -5473 9054 | 1-95684 | +-449 7877 4246 | 1-62798
+-173 -3115 6230 | 1-79449 | +-019 <1277 2554 | 1-40722 | +-245 4300 -8600 | 1-93450
+-764 9980 0040 | 3-60206 | +-445 7816 4368 | 1-64028 | +-360 6385 -7230 | 1-85914
—-037 -0858 1716 | 1-23452 | +-410 7256 -5488 | 173941 | +-592 9460 -1080 | 1-03342
+-667 0823 0354 | 2-54900 |{+-946 1-0000 <0000 <8 ¥ --515 <0003 -0006 | 4-77815
+-014 -1234 2468 | 1-39235 | +-018 -1268 2536 | 1-40415 | +-023 1311 -2622 | T-41863
—-112 ‘0472 0944 | 2-97497 | +-160 2921 -5842 | 1-76656 | +-259 4458 8916 | 1-95017

Samples of 20 skulls are randomly drawn from each of 30 different races, and the correlation between
head length and head breadth is calculated for each sample. The question which we may ask is: Are the data
consistent with the hypothesis

' ' P PL=P2= .. =P3gg=ps (47)
where p is not specified ?

We assume that if the hypothesis (47) is not true the p’s may assume any different and unequal values
whatever. Since p is not specified it is necessary to obtain an estimate of the common correlation coefficient,
7o, from the data. Various methods may be devised. Here Karl Pearson’s maximum likelihood estimate is
used, and to this end equations (44) are employed. Successive approximations give

p1 =:2490, p, = 2726, p,=-2761, p, = -2774.
These results seem to suggest that we may well take r, = -277. Using the table for n = 20 we obtain by
interpolation the =,’s of equation (32),
log;q P = —20-7077,*
4
and hence from (34) x = —2log, (P) = 95-362, f=58%
P, <-0001.

We therefore reject the hypothesis (47) and decide that it is most unlikely that each of the 30 races have
the same correlation between head length and head breadth.

E. S. Pearson and S. 8. Wilks also decided to reject (47) but they employed a different procedure. Using
(46), they found 5 — 24913

30
Hence using (45) 2= 2 (n—3)(5—%')2=9601, f=k—-1=29,
=1

P, <+000,030.
We see that using either procedure we should reject hypothesis (47).

* The value + -946 was used to obtain the maximum likelihood estimate of p, but was omitted from the calculations which
follow, since the purpose of the example is purely illustrative. It is clear that had this coefficient been included, the effect would
have been to increase the value of x2, and hence make the hypothesis (47) even more improbable.

1 It is not obvious what the exact degrees of freedom will be in this case. We know that if we are testing the hypothesis p = p,,
where p, is some fixed value, the degrees of freedom will be 2k. Without further theoretical work it is not possible to say what
the effect will be on the number of degrees of freedom of calculating the weighted means of the first four powers of the r’s. The
writer is aware that 2k is not correct in this case but offers it as an approximation until the problem is solved correctly.
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Karl Pearson, using his P, test, found that in only 3-7 per cent. of cases would a more improbable result
than the one he reached be obtained, and he therefore decided also to reject hypothesis (47). It is of interest
to note why his result differs so greatly from those obtained by the two previous methods.

T
Pearson defines his =, as my = J p(r|n, p)dr,
3
and his criterion is P=1]m.
=1

If we consider the class of admissible alternative hypotheses we see that here Pearson is really testing the
hypothesis p > ry ="-277 with the alternative that at least one p, < -277. This is equivalent to the alternative
(b) discussed under Question 3 (i), while the two previous methods are equivalent to the alternat‘ive (c¢), where
we assume that the p,'s may take any values between minus unity and plus unity. The discrepancy between
the results of Karl Pearson and of E. S. Pearson and S. S. Wilks is therefore not important, because we
see that they are really using methods designed to test different hypotheses.

In the case of two samples of size n, and n,, respectively, it would be quite unjustifiable to attempt to
estimate a common p for the two populations, and to carry out the first procedure suggested on p. xxiii
above, i.e. by calculating a =, and m, based on the estimate of p. The second procedure involving the use of
the 2’-transformation may however still be used. Since the degrees of freedom for y% are now k—1 = 1,
the second method of procedure reduces to the following:

1
Calculate 7z, = Llog n
1-7,
for t = 1, 2, and test the hypothesis pL=Pps (48)

by finding the ratio

and referring this to the normal probability scale. When we are testing hypothesis (48) we assume the
admissible alternative hypotheses will be that p; > p, or p; < p,, and hence we should consider both tail areas
of the normal curve. If, on the other hand, we are testing the hypothesis

przpe (50)
the admissible alternative hypothesis will be that p; <p,, and we should therefore only concern ourselves
with one tail area.

E. S. Pearson has suggested the following rough test, when dealing with small samples, involving the use
of Chart I, without the need for any transformation of variables. The rule to be adopted is as follows:

Using the observed values of r, and 7, read off from the appropriate curves for n, and n, in Chart I the
quantities p, and p,, p, and p, as shown in Fig. 7 below. Here we must distinguish between the two
hypotheses. If we are testing hypothesis (48) then the rule will be: Reject the hypothesis, p; = p,, if

Po,>Pa, O pp >pg. L. (51)
The risk of rejecting hypothesis (48) when it is true will be approximately -02, provided n, and n, are not
too different. If we are testing hypothesis (50) then the rule will be: Reject the hypothesis, p; > p,, if
sz > pal. ...... (52)

The first kind of error, i.e. the risk of rejecting hypothesis (50) when it is true, will be -01. The basis of this
rule will be discussed later.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521124126
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-12412-6 - Tables of the Ordinates and Probability Integral of the Distribution of the Correlation Coefficient in Small

Samples
F. N. David
Frontmatter
More information
INTRODUCTION XXIX
/0(11 -----------
| L
’ a
() / / . Gy
B ’ /// i 4 / s
2 : 3
5 A ./{a"/ i 7 &
- '“,/ ,'(’ - gl; ——————
/ i e / 1772
s VA :
, / !
/ A
4 /, . b2 1§
S i
|
nye / |
V4 !
0 zi p Scale of r

Scale of 2’
Fig. 7.

Example I. Suppose we consider two of the types of bacteria, i.e. Streptococcus Lactis No. 5 and Strepto-
coccus Cremoris No. 6, given in the example on p. xxv. We may ask the question: Could the correlation

between k, the increase per hour of the number of bacteria, and the amount of acid, b, produced by one cell
in one hour, have a common value for both populations of bacteria?

Table V
Number of
. experiments Correlation
Type of bacteria with the same between & and b
culture

Streptococcus Lactis 5 7 7, = +-8276
Streptococcus Cremoris 6 6 7y = —-1973

We are testing the hypothesis P1 = P2

and our alternative hypotheses will be that p; > p, or p; <p,. Turning to Chart I we see that p, = +-95,
Py, = +°33; pg, = +56, Py, = — 755, giving Pb, < Pay:
There does not therefore seem to be any ground for rejecting the hypothesis that the correlation between
the two variables is the same for both types of bacteria.

This is confirmed by an application of the z’-test, which gives the probability of a larger difference between
the 7’s to be «071. It would, of course, be ridiculous to accept the hypothesis as proved on such scanty data.
The results of our analysis would lead us to accept the hypothesis as proved only if it was confirmed by
further experimentation.

ExampleI11. Aseriesof measurementson skulls of different Swissraces are givenin ““ Les Cranes Valaisans . *

* Crania Helvetica, I. “‘Les Cranes Valaisans de la Vallée du Rhone”, par Eugene Pittard.
PCC d
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Random samples of 10 were picked out from the Biel and Sierre series, and the coefficient of correlation
between maximum length and maximum breadth of the skulls was worked out:

Correlation for the Biel series =r, = +-777,
Correlation for the Sierre series = r, = — 352,

We ask the question: Is it possible that the correlation between maximum length and breadth of the skull
can be the same for both series? We have no a priori knowledge which might lead us to test the hypothesis
P12 pg, and we must therefore test the hypothesis

P1 = Po

and assume that if the hypothesis tested is not true, then p, may be >p, or <p,.
Chart I shows us that the lines r =7, and r=r, cut the pair of curves n = 10 at the points

(-777,-92) (777, -38) and (—-352, +-23) (—-352, —-73).
We see that Pb, > Pay:

We should therefore decide to reject the hypothesis p; = p,. The 2'-test gives the probability of a greater
difference between the 7’s to be -0086. This confirms the result of our approximate test.

Theoretical Basis of Rule given

The position may be understood most clearly by comparing in Fig. 7 the confidence belt for (r, p) and that
for (', {). For rough purposes it may be supposed that 2z’ is normally distributed about { with standard

deviation 1 /\/n — 3. Thus the confidence belt for a given n is bounded by the two parallel lines

2 ={+y¢gf\n-3. L. (53)

The values of , for the (2, {) charts corresponding to Charts I, IT, III and IV, respectively, would have
the values shown in the table below.

Table VI
Chart: I 1I III v
o 1-645 1-960 2-326 2-576
o 2-326 2772 3-289 3-693
Risk of error in -02 ‘006 -001 <0002
using rule |

Corresponding to the observed r, and r, we have z; and z; and find from the belt {,, {, and {,, {.
Suppose we now follow the rule:

Reject the hypothesis (48) that {; = {,, if either
Lo, >8le, o8 Lp>Le. e (54)

This is equivalent to the rule (51) expressed above in terms of the p’s. It is also seen from the diagram to be
equivalent to rejecting the hypothesis tested if

lz;—'zil>¢'0/~/n1-3+‘l’o/‘\/;’/2—3- ...... (55)

But provided n; and n, be of reasonable size and not too different

1

1 1 1 1

1
—_——e~ | — .,
n1—3 nz"3 '\/2(\/70,1-—-3 vn2~3)
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