
Part I

Statistical Modeling:
Foundations and Limitations

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12390-7 - Statistical Models and Causal Inference: A Dialogue with the Social Sciences
David A. Freedman
Excerpt
More information

http://www.cambridge.org/9780521123907
http://www.cambridge.org
http://www.cambridge.org


1

Issues in the Foundations of Statistics:
Probability and Statistical Models

“Son, no matter how far you travel, or how smart you get, always
remember this: Someday, somewhere, a guy is going to show you
a nice brand-new deck of cards on which the seal is never broken,
and this guy is going to offer to bet you that the jack of spades
will jump out of this deck and squirt cider in your ear. But, son,
do not bet him, for as sure as you do you are going to get an ear
full of cider.”

— Damon Runyon1

Abstract. After sketching the conflict between objectivists and sub-
jectivists on the foundations of statistics, this chapter discusses an issue
facing statisticians of both schools, namely, model validation. Statistical
models originate in the study of games of chance and have been suc-
cessfully applied in the physical and life sciences. However, there are
basic problems in applying the models to social phenomena; some of the
difficulties will be pointed out. Hooke’s law will be contrasted with re-
gression models for salary discrimination, the latter being a fairly typical
application in the social sciences.

Foundations of Science (1995) 1: 19–39. With kind permission from
Springer Science+Business Media.
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4 I. Statistical Modeling: Foundations and Limitations

1.1 What is probability?

For a contemporary mathematician, probability is easy to define, as a
countably additive set function on a σ -field, with a total mass of one. This
definition, perhaps cryptic for non-mathematicians, was introduced by
A. N. Kolmogorov around 1930, and has been extremely convenient for
mathematical work; theorems can be stated with clarity, and proved with
rigor.2

For applied workers, the definition is less useful; countable addi-
tivity and σ -fields are not observed in nature. The issue is of a familiar
type—what objects in the world correspond to probabilities? This question
divides statisticians into two camps:

(i) the “objectivist” school, also called the “frequentists,”
(ii) the “subjectivist” school, also called the “Bayesians,” after the

Reverend Thomas Bayes (England, c. 1701–61) (Bayes, 1764).

Other positions have now largely fallen into disfavor; for exam-
ple, there were “fiducial” probabilities introduced by R. A. Fisher (Eng-
land, 1890–1962). Fisher was one of the two great statisticians of the
century; the other, Jerzy Neyman (b. Russia, 1894; d. U.S.A., 1981),
turned to objectivism after a Bayesian start. Indeed, the objectivist po-
sition now seems to be the dominant one in the field, although the sub-
jectivists are still a strong presence. Of course, the names are imperfect
descriptors. Furthermore, statisticians agree amongst themselves about
as well as philosophers; many shades of opinion will be represented in
each school.

1.2 The objectivist position

Objectivists hold that probabilities are inherent properties of the sys-
tems being studied. For a simple example, like the toss of a coin, the idea
seems quite clear at first. You toss the coin, it will land heads or tails, and
the probability of heads is around 50%. A more exact value can be deter-
mined experimentally, by tossing the coin repeatedly and taking the long
run relative frequency of heads. In one such experiment, John Kerrich (a
South African mathematician interned by the Germans during World War
II) tossed a coin 10,000 times and got 5067 heads: The relative frequency
was 5067/10,000 = 50.67%. For an objectivist such as myself, the proba-
bility of Kerrich’s coin landing heads has its own existence, separate from
the data; the latter enable us to estimate the probability, or test hypotheses
concerning it.

The objectivist position exposes one to certain difficulties.As Keynes
said, “In the long run, we are all dead.” Heraclitus (also out of context)
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Foundations of Statistics 5

is even more severe: “You can’t step into the same river twice.” Still, the
tosses of a coin, like the throws of a die and the results of other such chance
processes, do exhibit remarkable statistical regularities. These regularities
can be described, predicted, and analyzed by technical probability theory.
Using Kolmogorov’s axioms (or more primitive definitions), we can con-
struct statistical models that correspond to empirical phenomena; although
verification of the correspondence is not the easiest of tasks.

1.3 The subjectivist position

For the subjectivist, probabilities describe “degrees of belief.” There
are two camps within the subjectivist school, the “classical” and the
“radical.” For a “classical” subjectivist, like Bayes himself or Laplace—
although such historical readings are quite tricky—there are objective
“parameters” which are unknown and to be estimated from the data. (A
parameter is a numerical characteristic of a statistical model for data—
for instance, the probability of a coin landing heads; other examples will
be given below.) Even before data collection, the classical subjectivist
has information about the parameters, expressed in the form of a “prior
probability distribution.”

The crucial distinction between a classical subjectivist and an objec-
tivist: The former will make probability statements about parameters—for
example, in a certain coin-tossing experiment, there is a 25% chance that
the probability of heads exceeds .67. However, objectivists usually do
not find that such statements are meaningful; they view the probability of
heads as an unknown constant, which either is—or is not—bigger than
.67. In replications of the experiment, the probability of heads will always
exceed .67, or never; 25% cannot be relevant. As a technical matter, if
the parameter has a probability distribution given the data, it must have
a “marginal” distribution—that is, a prior. On this point, objectivists and
subjectivists agree; the hold-out was R. A. Fisher, whose fiducial proba-
bilities come into existence only after data collection.

“Radical” subjectivists, like Bruno de Finetti or Jimmie Savage, dif-
fer from classical subjectivists and objectivists; radical subjectivists deny
the very existence of unknown parameters. For such statisticians, proba-
bilities express degrees of belief about observables. You pull a coin out of
your pocket, and—Damon Runyon notwithstanding—they can assign a
probability to the event that it will land heads when you toss it. The braver
ones can even assign a probability to the event that you really will toss the
coin. (These are “prior” probabilities, or “opinions.”) Subjectivists can
also “update” opinions in the light of the data; for example, if the coin is
tossed ten times, landing heads six times and tails four times, what is the
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6 I. Statistical Modeling: Foundations and Limitations

chance that it will land heads on the eleventh toss? This involves com-
puting a “conditional” probability using Kolmogorov’s calculus, which
applies whether the probabilities are subjective or objective.

Here is an example with a different flavor: What is the chance that
a Republican will be president of the U.S. in the year 2025? For many
subjectivists, this is a meaningful question, which can in principle be an-
swered by introspection. For many objectivists, this question is beyond
the scope of statistical theory. As best I can judge, however, complications
will be found on both sides of the divide. Some subjectivists will not have
quantifiable opinions about remote political events; likewise, there are ob-
jectivists who might develop statistical models for presidential elections,
and compute probabilities on that basis.3

The difference between the radical and classical subjectivists rides
on the distinction between parameters and observables; this distinction
is made by objectivists too and is often quite helpful. (In some cases, of
course, the issue may be rather subtle.) The radical subjectivist denial of
parameters exposes members of this school to some rhetorical awkward-
ness; for example, they are required not to understand the idea of tossing
a coin with an unknown probability of heads. Indeed, if they admit the
coin, they will soon be stuck with all the unknown parameters that were
previously banished.4

1.3.1 Probability and relative frequency

In ordinary language, “probabilities” are not distinguished at all
sharply from empirical percentages—“relative frequencies.” In statistics,
the distinction may be more critical. With Kerrich’s coin, the relative fre-
quency of heads in 10,000 tosses, 50.67%, is unlikely to be the exact
probability of heads; but it is unlikely to be very far off. For an example
with a different texture, suppose you see the following sequence of ten
heads and ten tails:

T H T H T H T H T H T H T H T H T H T H.

What is the probability that the next observation will be a head? In this
case, relative frequency and probability are quite different.5

One more illustration along that line: United Airlines Flight 140
operates daily from San Francisco to Philadelphia. In 192 out of the last
365 days, Flight 140 landed on time. You are going to take this flight
tomorrow. Is your probability of landing on time given by 192/365? For
a radical subjectivist, the question is clear; not so for an objectivist or a
classical subjectivist. Whatever the question really means, 192/365 is the
wrong answer—if you are flying on the Friday before Christmas. This is
Fisher’s “relevant subset” issue; and he seems to have been anticipated
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Foundations of Statistics 7

by von Mises. Of course, if you pick a day at random from the data set,
the chance of getting one with an on-time landing is indeed 192/365; that
would not be controversial. The difficulties come with (i) extrapolation
and (ii) judging the exchangeability of the data, in a useful Bayesian
phrase. Probability is a subtler idea than relative frequency.6

1.3.2 Labels do not settle the issue

Objectivists sometimes argue that they have the advantage, because
science is objective. This is not serious; “objectivist” statistical analysis
must often rely on judgment and experience: Subjective elements come
in. Likewise, subjectivists may tell you that objectivists (i) use “prior
information,” and (ii) are therefore closet Bayesians. Point (i) may be
granted. The issue for (ii) is how prior information enters the analysis, and
whether this information can be quantified or updated the way subjectivists
insist it must be. The real questions are not to be settled on the basis of
labels.

1.4 A critique of the subjectivist position

The subjectivist position seems to be internally consistent, and fairly
immune to logical attack from the outside. Perhaps as a result, scholars of
that school have been quite energetic in pointing out the flaws in the objec-
tivist position. From an applied perspective, however, the subjectivist po-
sition is not free of difficulties either. What are subjective degrees of belief,
where do they come from, and why can they be quantified? No convincing
answers have been produced. At a more practical level, a Bayesian’s opin-
ion may be of great interest to himself, and he is surely free to develop it
in any way that pleases him; but why should the results carry any weight
for others?

To answer the last question, Bayesians often cite theorems showing
“inter-subjective agreement.” Under certain circumstances, as more and
more data become available, two Bayesians will come to agree: The data
swamp the prior. Of course, other theorems show that the prior swamps
the data, even when the size of the data set grows without bounds—
particularly in complex, high-dimensional situations. (For a review, see
Diaconis and Freedman 1986.) Theorems do not settle the issue, especially
for those who are not Bayesians to start with.

My own experience suggests that neither decision-makers nor their
statisticians do in fact have prior probabilities. A large part of Bayesian
statistics is about what you would do if you had a prior.7 For the rest, sta-
tisticians make up priors that are mathematically convenient or attractive.
Once used, priors become familiar; therefore, they come to be accepted

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12390-7 - Statistical Models and Causal Inference: A Dialogue with the Social Sciences
David A. Freedman
Excerpt
More information

http://www.cambridge.org/9780521123907
http://www.cambridge.org
http://www.cambridge.org


8 I. Statistical Modeling: Foundations and Limitations

as “natural” and are liable to be used again. Such priors may eventually
generate their own technical literature.

1.4.1 Other arguments for the Bayesian position

Coherence. Well-known theorems, including one by Freedman and
Purves (1969), show that stubborn non-Bayesian behavior has costs.Your
opponents can make a “dutch book,” and extract your last penny—if you
are generous enough to cover all the bets needed to prove the results.7

However, most of us don’t bet at all; even the professionals bet on relatively
few events. Thus, coherence has little practical relevance. (Its rhetorical
power is undeniable—who wants to be incoherent?)

Rationality. It is often urged that to be rational is to be Bayesian. In-
deed, there are elaborate axiom systems about preference orderings, acts,
consequences, and states of nature, whose conclusion is—that you are a
Bayesian. The empirical evidence shows, fairly clearly, that those axioms
do not describe human behavior at all well. The theory is not descriptive;
people do not have stable, coherent prior probabilities.

Now the argument shifts to the “normative”: If you were rational, you
would obey the axioms and be a Bayesian. This, however, assumes what
must be proved. Why would a rational person obey those axioms? The
axioms represent decision problems in schematic and highly stylized
ways. Therefore, as I see it, the theory addresses only limited aspects
of rationality. Some Bayesians have tried to win this argument on the
cheap: To be rational is, by definition, to obey their axioms. (Objectivists
do not always stay on the rhetorical high road either.)

Detailed examination of the flaws in the normative argument is a
complicated task, beyond the scope of the present article. In brief, my
position is this. Many of the axioms, on their own, have considerable
normative force. For example, if I am found to be in violation of the “sure
thing principle,” I would probably reconsider.9 On the other hand, taken
as a whole, decision theory seems to have about the same connection to
real decisions as war games do to real wars.

What are the main complications? For some events, I may have a
rough idea of likelihood: One event is very likely, another is unlikely, a
third is uncertain. However, I may not be able to quantify these likeli-
hoods, even to one or two decimal places; and there will be many events
whose probabilities are simply unknown—even if definable.10 Likewise,
there are some benefits that can be assessed with reasonable accuracy; oth-
ers can be estimated only to rough orders of magnitude; in some cases,
quantification may not be possible at all. Thus, utilities may be just as
problematic as priors.
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Foundations of Statistics 9

The theorems that derive probabilities and utilities from axioms
push the difficulties back one step.11 In real examples, the existence of
many states of nature must remain unsuspected. Only some acts can be
contemplated; others are not imaginable until the moment of truth ar-
rives. Of the acts that can be imagined, the decision-maker will have
preferences between some pairs but not others. Too, common knowledge
suggests that consequences are often quite different in the foreseeing and
in the experiencing.

Intransitivity would be an argument for revision, although not a deci-
sive one; for example, a person choosing among several job offers might
well have intransitive preferences, which it would be a mistake to ig-
nore. By way of contrast, an arbitrageur who trades bonds intransitively is
likely to lose a lot of money. (There is an active market in bonds, while the
market in job offers—largely nontransferable—must be rather thin; the
practical details make a difference.) The axioms do not capture the texture
of real decision making. Therefore, the theory has little normative force.

The fallback defense. Some Bayesians will concede much of what
I have said: The axioms are not binding; rational decision-makers may
have neither priors nor utilities. Still, the following sorts of arguments
can be heard. The decision-maker must have some ideas about relative
likelihoods for a few events; a prior probability can be made up to capture
such intuitions, at least in gross outline. The details (for instance, that dis-
tributions are normal) can be chosen on the basis of convenience. A util-
ity function can be put together using similar logic: The decision-maker
must perceive some consequences as very good, and big utility numbers
can be assigned to these; he must perceive some other consequences as
trivial, and small utilities can be assigned to those; and in between is in
between. The Bayesian engine can now be put to work, using such ap-
proximate priors and utilities. Even with these fairly crude approxima-
tions, Bayesian analysis is held to dominate other forms of inference:
That is the fallback defense.

Here is my reaction to such arguments. Approximate Bayesian anal-
ysis may in principle be useful. That this mode of analysis dominates
other forms of inference, however, seems quite debatable. In a statistical
decision problem, where the model and loss function are given, Bayes
procedures are often hard to beat, as are objectivist likelihood proce-
dures; with many of the familiar textbook models, objectivist and subjec-
tivist procedures should give similar results if the data set is large. There
are sharp mathematical theorems to back up such statements.12 On the
other hand, in real problems—where models and loss functions are mere

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-12390-7 - Statistical Models and Causal Inference: A Dialogue with the Social Sciences
David A. Freedman
Excerpt
More information

http://www.cambridge.org/9780521123907
http://www.cambridge.org
http://www.cambridge.org


10 I. Statistical Modeling: Foundations and Limitations

approximations—the optimality of Bayes procedures cannot be a mathe-
matical proposition. And empirical proof is conspicuously absent.

If we could quantify breakdowns in model assumptions, or degrees
of error in approximate priors and loss functions, the balance of argument
might shift considerably. The rhetoric of “robustness” may suggest that
such error analyses are routine. This is hardly the case even for the mod-
els. For priors and utilities, the position is even worse, since the entities
being approximated do not have any independent existence—outside the
Bayesian framework that has been imposed on the problem.

De Finetti’s theorem. Suppose you are a radical subjectivist, watch-
ing a sequence of 0’s and 1’s. In your prior opinion, this sequence is
exchangeable: Permuting the order of the variables will not change your
opinion about them. A beautiful theorem of de Finetti’s asserts that your
opinion can be represented as coin tossing, the probability of heads being
selected at random from a suitable prior distribution. This theorem is of-
ten said to “explain” subjective or objective probabilities, or justify one
system in terms of the other.13

Such claims cannot be right. What the theorem does is this: It en-
ables the subjectivist to discover features of his prior by mathematical
proof, rather than introspection. For example, suppose you have an ex-
changeable prior about those 0’s and 1’s. Before data collection starts, de
Finetti will prove to you by pure mathematics that in your own opinion
the relative frequency of 1’s among the first n observations will almost
surely converge to a limit as n → ∞. (Of course, the theorem has other
consequences too, but all have the same logical texture.)

This notion of “almost surely,” and the limiting relative frequency,
are features of your opinion not of any external reality. (“Almost surely”
means with probability 1, and the probability in question is your prior.)
Indeed, if you had not noticed these consequences of your prior by intro-
spection, and now do not like them, you are free to revise your opinion—
which will have no impact outside your head. What the theorem does is
to show how various aspects of your prior opinion are related to each
other. That is all the theorem can do, because the conditions of the the-
orem are conditions on the prior alone.

To illustrate the difficulty, I cite an old friend rather than making a
new enemy. According to Jeffrey (1983, p. 199), de Finetti’s result proves
“your subjective probability measure [is] a certain mixture or weighted
average of the various possible objective probability measures”—an un-
usually clear statement of the interpretation that I deny. Each of Jeffrey’s
“objective” probability measures governs the tosses of a p-coin, where p

is your limiting relative frequency of 1’s. (Of course, p has a probability
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Foundations of Statistics 11

distribution of its own, in your opinion.) Thus, p is a feature of your
opinion, not of the real world: The mixands in de Finetti’s theorem are
“objective” only by terminological courtesy. In short, the “p-coins” that
come out of de Finetti’s theorem are just as subjective as the prior that
went in.

1.4.2 To sum up
The theory—as developed by Ramsey, von Neumann and Morgen-

stern, de Finetti, and Savage, among others—is great work. They solved
an important historical problem of interest to economists, mathemati-
cians, statisticians, and philosophers alike. On a more practical level, the
language of subjective probability is evocative. Some investigators find
the consistency of Bayesian statistics to be a useful discipline; for some
(including me), the Bayesian approach can suggest statistical procedures
whose behavior is worth investigating. But the theory is not a complete
account of rationality, or even close. Nor is it the prescribed solution for
any large number of problems in applied statistics, at least as I see matters.

1.5 Statistical models
Of course, statistical models are applied not only to coin tossing

but also to more complex systems. For example, “regression models” are
widely used in the social sciences, as indicated below; such applications
raise serious epistemological questions. (This idea will be developed from
an objectivist perspective, but similar issues are felt in the other camp.)

The problem is not purely academic. The census suffers an under-
count, more severe in some places than others; if certain statistical mod-
els are to be believed, the undercount can be corrected—moving seats
in Congress and millions of dollars a year in entitlement funds (Survey
Methodology (1992) 18(1); Jurimetrics (1993) 34(1); Statistical Science
(1994) 9(4). If yet other statistical models are to be believed, the veil of
secrecy can be lifted from the ballot box, enabling the experts to deter-
mine how racial or ethnic groups have voted—a crucial step in litigation
to enforce minority voting rights (Evaluation Review, (1991) 1(6); Klein
and Freedman, 1993).

1.5.1 Examples
Here, I begin with a noncontroversial example from physics, namely,

Hooke’s law: Strain is proportional to stress. We will have some number
n of observations. For the ith observation, indicated by the subscript i,
we hang weighti on a spring. The length of the spring is measured as
lengthi . The regression model says that14

(1) lengthi = a + b × weighti + εi .
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