Nutritional Biochemistry of the Vitamins

SECOND EDITION

The vitamins are a chemically disparate group of compounds whose only common feature is that they are dietary essentials that are required in small amounts for the normal functioning of the body and maintenance of metabolic integrity. Metabolically, they have diverse functions, such as coenzymes, hormones, antioxidants, mediators of cell signaling, and regulators of cell and tissue growth and differentiation. This book explores the known biochemical functions of the vitamins, the extent to which we can explain the effects of deficiency or excess, and the scientific basis for reference intakes for the prevention of deficiency and promotion of optimum health and well-being. It also highlights areas in which our knowledge is lacking and further research is required. This book provides a compact and authoritative reference volume of value to students and specialists alike in the field of nutritional biochemistry, and indeed all who are concerned with vitamin nutrition, deficiency, and metabolism.

David Bender is a Senior Lecturer in Biochemistry at University College London. He has written seventeen books, as well as numerous chapters and reviews, on various aspects of nutrition and nutritional biochemistry. His research has focused on the interactions between vitamin B_6 and estrogens, which has led to the elucidation of the role of vitamin B_6 in terminating the actions of steroid hormones. He is currently the Editor-in-Chief of *Nutrition Research Reviews*.

Nutritional Biochemistry of the Vitamins

SECOND EDITION

DAVID A. BENDER

University College London

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521122214

© David A. Bender 2003

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003 This digitally printed version 2009

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-80388-5 Hardback ISBN 978-0-521-12221-4 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

List of Figures	<i>page</i> xvii
List of Tables	xxi
Preface	xxiii
1 The Vitamins	1
1.1 Definition and Nomenclature of the Vitamins	2
1.1.1 Methods of Analysis and Units of Activity	6
1.1.2 Biological Availability	8
1.2 Vitamin Requirements and Reference Intakes	10
1.2.1 Criteria of Vitamin Adequacy and the Stages of	
Development of Deficiency	10
1.2.2 Assessment of Vitamin Nutritional Status	12
1.2.3 Determination of Requirements	17
1.2.3.1 Population Studies of Intake	17
1.2.3.2 Depletion/Repletion Studies	18
1.2.3.3 Replacement of Metabolic Losses	18
1.2.3.4 Studies in Patients Maintained on Total	
Parenteral Nutrition	19
1.2.4 Reference Intakes of Vitamins	19
1.2.4.1 Adequate Intake	23
1.2.4.2 Reference Intakes for Infants and Children	23
1.2.4.3 Tolerable Upper Levels of Intake	24
1.2.4.4 Reference Intake Figures for Food Labeling	27
2 Vitamin A: Retinoids and Carotenoids	30
2.1 Vitamin A Vitamers and Units of Activity	31
2.1.1 Retinoids	31
2.1.2 Carotenoids	33
2.1.3 International Units and Retinol Equivalents	35

vi

Cambridge University Press				
978-0-521-12221-4 - Nutritional	Biochemistry of the	Vitamins,	Second	Edition
David A. Bender				
Frontmatter				
More information				

	2.2 Absorption and Metabolism of Vitamin A and Carotenoids	35
	2.2.1 Absorption and Metabolism of Retinol and Retinoic Acid	35
	2.2.1.1 Liver Storage and Release of Retinol	36
	2.2.1.2 Metabolism of Retinoic Acid	38
	2.2.1.3 Retinoyl Glucuronide and Other Metabolites	39
	2.2.2 Absorption and Metabolism of Carotenoids	40
	2.2.2.1 Carotene Dioxygenase	41
	2.2.2.2 Limited Activity of Carotene Dioxygenase	42
	2.2.2.3 The Reaction Specificity of Carotene Dioxygenase	43
	2.2.3 Plasma Retinol Binding Protein (RBP)	45
	2.2.4 Cellular Retinoid Binding Proteins CRBPs and	
	CRABPs	47
	2.3 Metabolic Functions of Vitamin A	49
	2.3.1 Retinol and Retinaldehyde in the Visual Cycle	49
	2.3.2 Genomic Actions of Retinoic Acid	54
	2.3.2.1 Retinoid Receptors and Response Elements	55
	2.3.3 Nongenomic Actions of Retinoids	58
	2.3.3.1 Retinoylation of Proteins	58
	2.3.3.2 Retinoids in Transmembrane Signaling	60
	2.4 Vitamin A Deficiency (Xerophthalmia)	61
	2.4.1 Assessment of Vitamin A Nutritional Status	64
	2.4.1.1 Plasma Concentrations of Retinol and β -Carotene	64
	2.4.1.2 Plasma Retinol Binding Protein	65
	2.4.1.3 The Relative Dose Response (RDR) Test	66
	2.4.1.4 Conjunctival Impression Cytology	66
	2.5 Vitamin A Requirements and Reference Intakes	66
	2.5.1 Toxicity of Vitamin A	68
	2.5.1.1 Teratogenicity of Retinoids	70
	2.5.2 Pharmacological Uses of Vitamin A, Retinoids,	
	and Carotenoids	71
	2.5.2.1 Retinoids in Cancer Prevention and Treatment	71
	2.5.2.2 Retinoids in Dermatology	72
	2.5.2.3 Carotene	72
3	Vitamin D	77
	3.1 Vitamin D Vitamers, Nomenclature, and Units of Activity	78
	3.2 Metabolism of Vitamin D	79
	3.2.1 Photosynthesis of Cholecalciferol in the Skin	80
	3.2.2 Dietary Vitamin D	82
	3.2.3 25-Hydroxylation of Cholecalciferol	83
	3.2.4 Calcidiol 1α -Hydroxylase	85
	3.2.5 Calcidiol 24-Hydroxylase	85
	3.2.6 Inactivation and Excretion of Calcitriol	86
	3.2.7 Plasma Vitamin D Binding Protein (Gc-Globulin)	87
	0	

Contents

Cambridge University Press					
978-0-521-12221-4 - Nutritional	Biochemistry	of the	Vitamins,	Second	Edition
David A. Bender					
Frontmatter					
More information					

3.2.8 Regulation of Vitamin D Metabolism 87 3.2.8.1 Calcitriol 88 3.2.8.2 Parathyroid Hormone 88 3.2.8.3 Calcitonin 88 3.2.8.4 Plasma Concentrations of Calcium and Phosphate 89 3.3 Metabolic Functions of Vitamin D 89 3.3.1 Nuclear Vitamin D Receptors 91 3.3.2 Nongenomic Responses to Vitamin D 92 3.3.3 Stimulation of Intestinal Calcium and Phosphate Absorption 93 3.3.3.1 Induction of Calbindin-D 93 3.3.4 Stimulation of Renal Calcium Reabsorption 94 3.3.5 The Role of Calcitriol in Bone Metabolism 94 3.3.6 Cell Differentiation, Proliferation, and Apoptosis 96 3.3.7 Other Functions of Calcitriol 97 3.3.7.1 Endocrine Glands 98 3.3.7.2 The Immune System 98 3.4 Vitamin D Deficiency - Rickets and Osteomalacia 98 3.4.1 Nonnutritional Rickets and Osteomalacia 99 3.4.2 Vitamin D-Resistant Rickets 100 3.4.3 Osteoporosis 101 3.4.3.1 Glucocorticoid-Induced Osteoporosis 102 3.5 Assessment of Vitamin D Status 103 3.6 Requirements and Reference Intakes 104 3.6.1 Toxicity of Vitamin D 105 3.6.2 Pharmacological Uses of Vitamin D 106 4 Vitamin E: Tocopherols and Tocotrienols 109 4.1 Vitamin E Vitamers and Units of Activity 109 4.2 Metabolism of Vitamin E 113 4.3 Metabolic Functions of Vitamin E 115 4.3.1 Antioxidant Functions of Vitamin E 116 4.3.1.1 Prooxidant Actions of Vitamin E 118 4.3.1.2 Reaction of Tocopherol with Peroxynitrite 119 4.3.2 Nutritional Interactions Between Selenium and Vitamin E 120 4.3.3 Functions of Vitamin E in Cell Signaling 121 4.4 Vitamin E Deficiency 122 4.4.1 Vitamin E Deficiency in Experimental Animals 122 4.4.2 Human Vitamin E Deficiency 125 4.5 Assessment of Vitamin E Nutritional Status 125 4.6 Requirements and Reference Intakes 127 4.6.1 Upper Levels of Intake 128 4.6.2 Pharmacological Uses of Vitamin E 128 4.6.2.1 Vitamin E and Cancer 129 4.6.2.2 Vitamin E and Cardiovascular Disease 129

vii

Cambridge University Press					
978-0-521-12221-4 - Nutritional	Biochemistry	of the	Vitamins,	Second	Edition
David A. Bender					
Frontmatter					
More information					

viii		Contents
	4.6.2.3 Vitamin E and Cataracts	129
	4.6.2.4 Vitamin E and Neurodegenerative Diseases	129
5	Vitamin K	131
	5.1 Vitamin K Vitamers	132
	5.2 Metabolism of Vitamin K	133
	5.2.1 Bacterial Biosynthesis of Menaquinones	135
	5.3 The Metabolic Functions of Vitamin K	135
	5.3.1 The Vitamin K-Dependent Carboxylase	136
	5.3.2 Vitamin K-Dependent Proteins in Blood Clotting	139
	5.3.3 Osteocalcin and Matrix Gla Protein	141
	5.3.4 Vitamin K-Dependent Proteins in Cell Signaling – Gas6	142
	5.4 Vitamin K Deficiency	142
	5.4.1 Vitamin K Denciency Bleeding in Infancy	143
	5.5 Assessment of vitamin K Nutritional Status	143
	5.6 1 Upper Levels of Intake	145
	5.6.2 Pharmacological Uses of Vitamin K	145
6	Vitamin B ₁ – Thiamin	148
	6.1 Thiamin Vitamers and Antagonists	148
	6.2 Metabolism of Thiamin	150
	6.2.1 Biosynthesis of Thiamin	153
	6.3 Metabolic Functions of Thiamin	153
	6.3.1 Thiamin Diphosphate in the Oxidative Decarboxylation	
	of Oxoacids	154
	6.3.1.1 Regulation of Pyruvate Dehydrogenase Activity	155
	6.3.1.2 Thiamin-Responsive Pyruvate Dehydrogenase	
	Deficiency	156
	6.3.1.3 2-Oxoglutarate Dehydrogenase and the γ -Aminobutyric	150
	Acid (GABA) Shunt	156
	Surun Urino Disease	159
	6 3 2 Transketolase	150
	6.3.3 The Neuronal Function of Thiamin Triphosphate	159
	6.4 Thiamin Deficiency	161
	6.4.1 Dry Beriberi	161
	6.4.2 Wet Beriberi	162
	6.4.3 Acute Pernicious (Fulminating) Beriberi – Shoshin Beriberi	162
	6.4.4 The Wernicke–Korsakoff Syndrome	163
	6.4.5 Effects of Thiamin Deficiency on Carbohydrate Metabolism	n 164
	6.4.6 Effects of Thiamin Deficiency on Neurotransmitters	165
	6.4.6.1 Acetylcholine	165
	6.4.6.2 5-Hydroxytryptamine	165
	6.4.7 Thiaminases and Thiamin Antagonists	166

Cambridge University Press	
978-0-521-12221-4 - Nutritional Biochemistry of the V	/itamins, Second Edition
David A. Bender	
Frontmatter	
Moreinformation	

ontents	ix
6.5. Accordment of Thiamin Nutritional Status	167
6.5.1 Urinary Excretion of Thiamin and Thiochrome	167
6.5.2 Blood Concentration of Thiamin	167
6.5.3 Erythrocyte Transketolase Activation	168
6.6 Thiamin Requirements and Reference Intakes	169
6.6.1 Upper Levels of Thiamin Intake	169
6.6.2 Pharmacological Uses of Thiamin	169
Vitamin B_2 – Riboflavin	172
7.1 Riboflavin and the Flavin Coenzymes	172
7.2 The Metabolism of Riboflavin	175
7.2.1 Absorption, Tissue Uptake, and Coenzyme Synthesis	175
7.2.2 Riboflavin Binding Protein	177
7.2.3 Riboflavin Homeostasis	178
7.2.4 The Effect of Thyroid Hormones on Riboflavin Metabol	ism 178
7.2.5 Catabolism and Excretion of Riboflavin	179
7.2.6 Biosynthesis of Riboflavin	181
7.3 Metabolic Functions of Riboflavin	183
7.3.1 The Flavin Coenzymes: FAD and Riboflavin Phosphate	183
7.3.2 Single-Electron-Transferring Flavoproteins	184
7.3.3 IWO-Electron-Transferring Flavoprotein Denydrogenas	es 185
7.3.4 Nicolinalillue Nucleolide Disullue Oxidoleduciases	100
7.3.6 NADDH Oxidaea the Despiratory Burst Oxidaea	100
7.3.7 Molybdonum Containing Elevonrotain Hydroxylacos	107
7.3.8 Elavin Mixed-Function Oxidases (Hydroxylases)	180
7.3.9 The Bole of Riboflavin in the Cryptochromes	100
7.4 Riboflavin Deficiency	190
7.4.1 Impairment of Lipid Metabolism in Riboflavin Deficien	icv 191
7.4.2 Resistance to Malaria in Riboflavin Deficiency	192
7.4.3 Secondary Nutrient Deficiencies in Riboflavin Deficien	cy 193
7.4.4 Iatrogenic Riboflavin Deficiency	. 194
7.5 Assessment of Riboflavin Nutritional Status	196
7.5.1 Urinary Excretion of Riboflavin	196
7.5.2 Erythrocyte Glutathione Reductase (EGR) Activation	
Coefficient	197
7.6 Riboflavin Requirements and Reference Intakes	197
7.7 Pharmacological Uses of Riboflavin	198
Niacin	200
8.1 Niacin Vitamers and Nomenclature	201
8.2 Niacin Metabolism	203
8.2.1 Digestion and Absorption	203
8.2.1.1 Unavailable Niacin in Gereals	203
8.2.2 Synthesis of the Nicotinamide Nucleotide Coenzymes	203

х

Cambridge University Press 978-0-521-12221-4 - Nutritional Biochemistry of the Vitamins, Second Edition David A. Bender Frontmatter <u>More information</u>

8.2.3 Catabolism of NAD(P)	205
8.2.4 Urinary Excretion of Niacin Metabolites	206
8.3 The Synthesis of Nicotinamide Nucleotides from Tryptophan 8.3.1 Picolinate Carboxylase and Nonenzymic Cyclization to	208
Quinolinic Acid	210
8.3.2 Tryptophan Dioxygenase	211
8.3.2.1 Saturation of Tryptophan Dioxygenase with Its	
Heme Cofactor	211
8.3.2.2 Induction of Tryptophan Dioxygenase by	
Glucocorticoid Hormones	211
8.3.2.3 Induction Tryptophan Dioxygenase by Glucagon	212
8.3.2.4 Repression and Inhibition of Tryptophan Dioxygenase	
by Nicotinamide Nucleotides	212
8.3.3 Kynurenine Hydroxylase and Kynureninase	212
8.3.3.1 Kynurenine Hydroxylase	213
8.3.3.2 Kynureninase	213
8.4 Metabolic Functions of Niacin	214
8.4.1 The Redox Function of NAD(P)	214
8.4.1.1 Use of NAD(P) in Enzyme Assays	215
8.4.2 ADP-Ribosyltransferases	215
8.4.3 Poly(ADP-ribose) Polymerases	217
8.4.4 CADP-Ribose and Nicotinic Acid Adenine Dinucleotide	010
Phosphate (NAADP)	219
8.5 Pellagra – A Disease of Tryptophan and Niacin Deficiency	221
8.5.1 Other Nutrient Deficiencies in the Etiology of Pellagra	222
8.5.2 Possible Pellagragenic Toxins	223
8.5.3 The Penagragenic Effect of Excess Dietary Leucine	223
8.5.4 Indorn Errors of Tryptophan Metabolism	224
8.5.5 Carcinold Syndrome	224
6.5.6 Drug-Illuuceu Pellagia	223
0.0 Assessment of Macin Multifional Status	223
Nucleotides	226
Nucleonities $8.6.2$ Uringry Exerction of N^1 Mothyl Nicotingmide and Mothyl	220
Duridone Carboyamide	226
8 7 Niacin Requirements and Reference Intakes	220
8.7.1 Unner Levels of Niacin Intake	228
8.8 Pharmacological Uses of Niacin	220
0.0 Thanhaeological 03e3 of Maein	225
9 Vitamin B ₆	232
9.1 Vitamin B ₆ Vitamers and Nomenclature	233
9.2 Metabolism of Vitamin B ₆	234
9.2.1 Muscle Pyridoxal Phosphate	236
9.2.2 Biosynthesis of Vitamin B ₆	236
9.3 Metabolic Functions of Vitamin B ₆	236
9.3.1 Pyridoxal Phosphate in Amino Acid Metabolism	237
9.3.1.1 α -Decarboxylation of Amino Acids	239

Cambridge University Press	
978-0-521-12221-4 - Nutritional Biochemistry of the Vitamins, Second Ed	ition
David A. Bender	
Frontmatter	
More information	

Contents	xi
0.3.1.2. Pacamization of the Amine Acid Substrate	241
9.3.1.3 Transamination of Amino Acids (Aminotransferase	241
Reactions)	241
9.3.1.4 Steps in the Transaminase Reaction	241
9.3.1.5 Transamination Reactions of Other Pyridoxal	272
Phosphate Enzymes	243
9.3.1.6 Transamination and Oxidative Deamination Catalyzed	210
by Dihydroxyphenylalanine (DOPA) Decarboxylase	243
9.3.1.7 Side-Chain Elimination and Replacement Reactions	244
9.3.2 The Role of Pyridoxal Phosphate in Glycogen Phosphorylase	244
9.3.3 The Role of Pyridoxal Phosphate in Steroid Hormone Action	0.45
and Gene Expression	245
9.4 Vitamin B_6 Deficiency	246
9.4.1 Enzyme Responses to Vitamin B_6 Deficiency	247
9.4.2 Drug-Induced Vitamin B_6 Deficiency	249
9.4.3 Vitamin B_6 Dependency Syndromes	250
9.5 The Assessment of Vitamin B_6 Nutritional Status	250
9.5.1 Plasma Concentrations of Vitamin B_6	251
9.5.2 Offinary Excretion of Vitamin B_6 and 4-Pyfidoxic Acid	251
9.5.5 Coenzyme Saturation of Hansammases	252
9.5.4 The Hyptophan Load Test 9.5.4 1 Artifacts in the Truntophan Load Test Associated with	232
Increased Tryptophan Dioxygenase Activity	253
95.4.2 Estrogens and Annarent Vitamin B _o Nutritional Status	254
$9.5.5.7.2$ Estrogens and Apparent vitamin D_6 (valuational status) 9.5.5 The Methionine Load Test	255
9.6 Vitamin B _c Requirements and Reference Intakes	256
9.6.1 Vitamin B ₆ Requirements Estimated from Metabolic	200
Turnover	256
9.6.2 Vitamin B_6 Requirements Estimated from Depletion/	
Repletion Studies	257
9.6.3 Vitamin B_6 Requirements of Infants	259
9.6.4 Toxicity of Vitamin B_6	259
9.6.4.1 Upper Levels of Vitamin B ₆ Intake	260
9.7 Pharmacological Uses of Vitamin B_6	261
9.7.1 Vitamin B ₆ and Hyperhomocysteinemia	261
9.7.2 Vitamin B ₆ and the Premenstrual Syndrome	262
9.7.3 Impaired Glucose Tolerance	262
9.7.4 Vitamin B_6 for Prevention of the Complications of	
Diabetes Mellitus	263
9.7.5 Vitamin B ₆ for the Treatment of Depression	264
9.7.6 Antihypertensive Actions of Vitamin B ₆	264
9.8 Other Carbonyl Catalysts	265
9.8.1 Pyruvoyl Enzymes	266
9.8.2 Pyrroloquinoline Quinone (PQQ) and Tryptophan	
Tryptophylquinone (TTQ)	266
9.8.3 Quinone Catalysts in Mammalian Enzymes	268

xii

Cambridge University Press 978-0-521-12221-4 - Nutritional Biochemistry of the Vitamins, Second Edition David A. Bender Frontmatter <u>More information</u>

Folate and Other Pterins and Vitamin B ₁₂	:
10.1 Folate Vitamers and Dietary Folate Equivalents	:
10.1.1 Dietary Folate Equivalents	
10.2 Metabolism of Folates	
10.2.1 Digestion and Absorption of Folates	
10.2.2 Tissue Uptake and Metabolism of Folate	
10.2.2.1 Poly- γ -glutamylation of Folate	
10.2.3 Catabolism and Excretion of Folate	
10.2.4 Biosynthesis of Pterins	
10.3 Metabolic Functions of Folate	
10.3.1 Sources of Substituted Folates	
10.3.1.1 Serine Hydroxymethyltransferase	
10.3.1.2 Histidine Catabolism	
10.3.1.3 Other Sources of One-Carbon Substituted Folates	
10.3.2 Interconversion of Substituted Folates	
10.3.2.1 Methylene-Tetrahydrofolate Reductase	
10.3.2.2 Disposal of Surplus One-Carbon Fragments	
10.3.3 Utilization of One-Carbon Substituted Folates	
10.3.3.1 Thymidylate Synthetase and Dihydrofolate Reductase	
10.3.3.2 Dihydrofolate Reductase Inhibitors	
10.3.3.3 The dUMP Suppression Test	
10.3.4 The Role of Folate in Methionine Metabolism	
10.3.4.1 The Methyl Folate Trap Hypothesis	
10.3.4.2 Hyperhomocysteinemia and Cardiovascular Disease	
10.4 Tetrahydrobiopterin	
10.4.1 The Role of Tetrahydrobiopterin in Aromatic Amino	
Acid Hydroxylases	
10.4.2 The Role of Tetrahydrobiopterin in Nitric Oxide Synthase	
10.5 Molybdopterin	
10.6 Vitamin B ₁₂ Vitamers and Nomenclature	
10.7 Metabolism of Vitamin B ₁₂	
10.7.1 Digestion and Absorption of Vitamin B_{12}	
10.7.2 Plasma Vitamin B_{12} Binding Proteins and Tissue Uptake	
10.7.3 Bacterial Biosynthesis of Vitamin B ₁₂	
10.8 Metabolic Functions of Vitamin B_{12}	
10.8.1 Methionine Synthetase	
10.8.2 Methylmalonyl CoA Mutase	
10.8.3 Leucine Aminomutase	
10.9 Deficiency of Folic Acid and Vitamin B_{12}	
10.9.1 Megaloblastic Anemia	
10.9.2 Pernicious Anemia	
10.9.3 Neurological Degeneration in Vitamin B_{12} Deficiency	
10.9.4 Folate Deficiency and Neural Tube Defects	
10.9.5 Folate Deficiency and Cancer Risk	
10.9.6 Drug-Induced Folate Deficiency	
10.9.7 Drug-Induced Vitamin B ₁₂ Deficiency	

Cambridge University Press					
978-0-521-12221-4 - Nutritional	Biochemistry	of the	Vitamins,	Second	Edition
David A. Bender					
Frontmatter					
More information					

Contents	xiii
10.10 Assessment of Folate and Vitamin B_{12} Nutritional Status	313
10.10.1 Plasma and Erythrocyte Concentrations of Folate	
and Vitamin B_{12}	314
10.10.2 The Schilling Test for Vitamin B ₁₂ Absorption	315
10.10.3 Methylmalonic Aciduria and Methylmalonic Acidemia	316
10.10.4 Histidine Metabolism – the FIGLU Test	316
10.10.5 The dOMP Suppression Test	317
Intakes	318
10.11.1 Folate Requirements	318
10.11.2 Vitamin B_{12} Requirements	318
10.11.3 Upper Levels of Folate Intake	319
10.12 Pharmacological Uses of Folate and Vitamin B_{12}	321
11 Biotin (Vitamin H)	324
11.1 Metabolism of Biotin	324
11.1.1 Bacterial Synthesis of Biotin	327
11.1.1.1 The Importance of Intestinal Bacterial Synthesis	
of Biotin	329
11.2 The Metabolic Functions of Biotin	329
11.2.1 The Role of Biotin in Carboxylation Reactions	330
11.2.1.1 Acetyl CoA Carboxylase	330
11.2.1.2 Pyruvate Carboxylase	331
11.2.1.3 Propionyl CoA Carboxylase	331
11.2.1.4 Methylcrotonyl CoA Carboxylase	332
11.2.2 Holocarboxylase Synthetase	332
11.2.2.1 Holocarboxylase Synthetiase Deliciency	332 224
11.2.3 Diotinidase Deficiency	334
11.2.4 Enzyme Induction by Biotin	335
11.2.5 Biotin in Regulation of the Cell Cycle	336
11.3 Biotin Deficiency	337
11.3.1 Metabolic Consequences of Biotin Deficiency	338
11.3.1.1 Glucose Homeostasis in Biotin Deficiency	338
11.3.1.2 Fatty Liver and Kidney Syndrome in Biotin-Deficient	
Chicks	338
11.3.1.3 Cot Death	339
11.3.2 Biotin Deficiency In Pregnancy	340
11.4 Assessment of Biotin Nutritional Status	340
11.5 Biotin Requirements	341
11.6 Avidin	341
12 Pantothenic Acid	345
12.1 Pantothenic Acid Vitamers	345
12.2 Metabolism of Pantothenic Acid	346
12.2.1 The Formation of CoA from Pantothenic Acid	348
12.2.1.1 Metabolic Control of CoA Synthesis	349

Cambridge University Press
978-0-521-12221-4 - Nutritional Biochemistry of the Vitamins, Second Edition
David A. Bender
Frontmatter
More information

xiv		Contents
	12.2.2 Catabolism of CoA	350
	12.2.3 The Formation and Turnover of ACP	350
	12.2.4 Biosynthesis of Pantothenic Acid	351
	12.3 Metabolic Functions of Pantothenic Acid	352
	12.4 Pantothenic Acid Deficiency	353
	12.4.1 Pantothenic Acid Deficiency in Experimental Animals	353
	12.4.2 Human Pantothenic Acid Deficiency – The Burning	
	Foot Syndrome	354
	12.5 Assessment of Pantothenic Acid Nutritional Status	355
	12.6 Pantothenic Acid Requirements	355
	12.7 Pharmacological Uses of Pantothenic Acid	356
13	Vitamin C (Ascorbic Acid)	357
	13.1 Vitamin C Vitamers and Nomenclature	358
	13.1.1 Assay of Vitamin C	359
	13.2 Metabolism of Vitamin C	359
	13.2.1 Intestinal Absorption and Secretion of Vitamin C	361
	13.2.2 Tissue Uptake of Vitamin C	361
	13.2.3 Oxidation and Reduction of Ascorbate	362
	13.2.4 Metabolism and Excretion of Ascorbate	363
	13.3 Metabolic Functions of Vitamin C	364
	13.3.1 Dopamine β -Hydroxylase	365
	13.3.2 Peptidyl Glycine Hydroxylase (Peptide α -Amidase)	366
	13.3.3 2-Oxoglutarate–Linked Iron-Containing Hydroxylases	367
	13.3.4 Stimulation of Enzyme Activity by Ascorbate In Vitro	369
	13.3.5 The Role of Ascorbate in Iron Absorption and	
	Metabolism	369
	13.3.6 Inhibition of Nitrosamine Formation by Ascorbate	370
	13.3.7 Pro- and Antioxidant Roles of Ascorbate	371
	13.3.7.1 Reduction of the Vitamin E Radical by Ascorbate	371
	13.3.8 Ascorbic Acid in Xenobiotic and Cholesterol Metabolism	371
	13.4 Vitamin C Deficiency – Scurvy	372
	13.4.1 Anemia in Scurvy	373
	13.5 Assessment of Vitamin C Status	374
	13.5.1 Urinary Excretion of Vitamin C and Saturation Testing	374
	13.5.2 Plasma and Leukocyte Concentrations of Ascorbate	374
	13.5.3 Markers of DNA Oxidative Damage	376
	13.6 Vitamin C Requirements and Reference Intakes	376
	13.6.1 The Minimum Requirement for Vitamin C	376
	13.6.2 Requirements Estimated from the Plasma and Leukocyte	
	Concentrations of Ascorbate	378
	13.6.3 Requirements Estimated from Maintenance of the Body	
	Pool of Ascorbate	378
	13.6.4 Higher Recommendations	379
	13.6.4.1 The Effect of Smoking on Vitamin C Requirements	380

Contents

Cambridge University Press	
978-0-521-12221-4 - Nutritional Biochemistry of the Vitamins, Second	Edition
David A. Bender	
Frontmatter	
Moreinformation	

13.6.5 Safety and Upper Levels of Intake of Vitamin C	:
13.6.5.1 Renal Stones	:
13.6.5.2 False Results in Urine Glucose Testing	:
13.6.5.3 Rebound Scurvy	:
13.6.5.4 Ascorbate and Iron Overload	:
13.7 Pharmacological Uses of Vitamin C	:
13.7.1 Vitamin C in Cancer Prevention and Therapy	:
13.7.2 Vitamin C in Cardiovascular Disease	:
13.7.3 Vitamin C and the Common Cold	:
14 Marginal Compounds and Phytonutrients	:
14.1 Carnitine	:
14.1.1 Biosynthesis and Metabolism of Carnitine	:
14.1.2 The Possible Essentiality of Carnitine	:
14.1.3 Carnitine as an Ergogenic Aid	:
14.2 Choline	:
14.2.1 Biosynthesis and Metabolism of Choline	:
14.2.2 The Possible Essentiality of Choline	:
14.3 Creatine	:
14.4 Inositol	:
14.4.1 Phosphatidylinositol in Transmembrane Signali	ng
14.4.2 The Possible Essentiality of Inositol	:
14.5 Taurine	:
14.5.1 Biosynthesis of Taurine	:
14.5.2 Metabolic Functions of Taurine	:
14.5.2.1 Taurine Conjugation of Bile Acids	:
14.5.2.2 Taurine in the Central Nervous System	:
14.5.2.3 Taurine and Heart Muscle	:
14.5.3 The Possible Essentiality of Taurine	:
14.6 Ubiquinone (Coenzyme Q)	4
14.7 Phytonutrients: Potentially Protective Compounds in	1
Plant Foods	4
14.7.1 Allyl Sulfur Compounds	4
14.7.2 Flavonoids and Polyphenols	4
14.7.3 Glucosinolates	4
14.7.4 Phytoestrogens	4
Bibliography	1
Index	4

XV

List of Figures

1.1.	Derivation of reference intakes of nutrients.	22
1.2.	Derivation of requirements or reference intakes for children.	24
1.3.	Derivation of reference intake (RDA) and tolerable upper level (UL)	
	for a nutrient.	25
2.1.	Major physiologically active retinoids.	32
2.2.	Major dietary carotenoids.	34
2.3.	Oxidative cleavage of β -carotene by carotene dioxygenase.	41
2.4.	Potential products arising from enzymic or nonenzymic	
	symmetrical or asymmetric oxidative cleavage of β -carotene.	44
2.5.	Role of retinol in the visual cycle.	51
2.6.	Interactions of all-trans- and 9-cis-retinoic acids (and other active	
	retinoids) with retinoid receptors.	56
2.7.	Retinoylation of proteins by retinoyl CoA.	59
2.8.	Retinoylation of proteins by 4-hydroxyretinoic acid.	60
3.1.	Vitamin D vitamers.	78
3.2.	Synthesis of calciol from 7-dehydrocholesterol in the skin.	81
3.3.	Metabolism of calciol to yield calcitriol and 24-hydroxycalcidiol.	84
4.1.	Vitamin E vitamers.	110
4.2.	Stereochemistry of α -tocopherol.	112
4.3.	Reaction of tocopherol with lipid peroxides.	114
4.4.	Resonance forms of the vitamin E radicals.	117
4.5.	Role of vitamin E as a chain-perpetuating prooxidant.	118
4.6.	Reactions of α - and γ -tocopherol with peroxynitrite.	119
5.1.	Vitamin K vitamers.	132
5.2.	Reaction of the vitamin K-dependent carboxylase.	137
5.3.	Intrinsic and extrinsic blood clotting cascades.	140
6.1.	Thiamin and thiamin analogs.	149
6.2.	Reaction of the pyruvate dehydrogenase complex.	154
6.3.	GABA shunt as an alternative to α -ketoglutarate dehydrogenase in	
	the citric acid cycle.	157

xvii

xviii

Cambridge University Press 978-0-521-12221-4 - Nutritional Biochemistry of the Vitamins, Second Edition David A. Bender Frontmatter <u>More information</u>

6.4.	Role of transketolase in the pentose phosphate pathway.	160
7.1.	Riboflavin, the flavin coenzymes and covalently bound flavins	
	in proteins.	173
7.2.	Products of riboflavin metabolism.	180
7.3.	Biosynthesis of riboflavin in fungi.	182
7.4.	One- and two-electron redox reactions of riboflavin.	184
7.5.	Reaction of glutathione peroxidase and glutathione reductase.	186
7.6.	Drugs that are structural analogs of riboflavin and may	
	cause deficiency.	195
8.1.	Niacin vitamers, nicotinamide and nicotinic acid, and the	
	nicotinamide nucleotide coenzymes.	202
8.2.	Synthesis of NAD from nicotinamide, nicotinic acid, and	
	quinolinic acid.	204
8.3.	Metabolites of nicotinamide and nicotinic acid.	207
8.4.	Pathways of tryptophan metabolism.	209
8.5.	Redox function of the nicotinamide nucleotide coenzymes.	215
8.6.	Reactions of ADP-ribosyltransferase and poly(ADP-ribose)	
	polymerase.	216
8.7.	Reactions catalyzed by ADP ribose cyclase.	220
9.1.	Interconversion of the vitamin B ₆ vitamers.	233
9.2.	Reactions of pyridoxal phosphate-dependent enzymes with	
	amino acids.	238
9.3.	Transamination of amino acids.	241
9.4.	Tryptophan load test for vitamin B ₆ status.	248
9.5.	Methionine load test for vitamin B ₆ status.	255
9.6.	Quinone catalysts.	267
10.1.	Folate vitamers.	272
10.2.	Biosynthesis of folic acid and tetrahydrobiopterin	277
10.3.	One-carbon substituted tetrahydrofolic acid derivatives.	280
10.4.	Sources and uses of one-carbon units bound to folate.	281
10.5.	Reactions of serine hydroxymethyltransferase and the glycine	
	cleavage system.	281
10.6.	Catabolism of histidine – basis of the FIGLU test for folate status.	282
10.7.	Reaction of methylene-tetrahydrofolate reductase.	284
10.8.	Synthesis of thymidine monophosphate.	287
10.9.	Metabolism of methionine.	290
10.10.	Role of tetrahydrobiopterin in aromatic amino acid hydroxylases.	295
10.11.	Reaction of nitric oxide synthase.	297
10.12.	Vitamin B_{12} .	299
10.13.	Reactions of propionyl CoA carboxylase and methylmalonyl	
	CoA mutase.	305
11.1.	Metabolism of biotin.	325
11.2.	Biotin metabolites.	326

List of Figures

List of Figures

xix

11.3.	Biosynthesis of biotin.	328
12.1.	Pantothenic acid and related compounds and coenzyme A.	346
12.2.	Biosynthesis of coenzyme A.	347
12.3.	Biosynthesis of pantothenic acid.	351
13.1.	Vitamin C vitamers.	358
13.2.	Biosynthesis of ascorbate.	360
13.3.	Redox reactions of ascorbate.	363
13.4.	Synthesis of the catecholamines.	365
13.5.	Reactions of peptidyl glycine hydroxylase and peptidyl	
	hydroxyglycine α -amidating lyase.	366
13.6.	Reaction sequence of prolyl hydroxylase.	368
14.1.	Reaction of carnitine acyltransferase.	386
14.2.	Biosynthesis of carnitine.	387
14.3.	Biosynthesis of choline and acetylcholine.	390
14.4.	Catabolism of choline.	391
14.5.	Synthesis of creatine.	392
14.6.	Formation of inositol trisphosphate and diacylglycerol.	395
14.7.	Pathways for the synthesis of taurine from cysteine.	397
14.8.	Ubiquinone.	400
14.9.	Allyl sulfur compounds allicin and alliin.	402
14.10.	Major classes of flavonoids.	403
14.11.	Glucosinolates.	404
14 12	Estradiol and the major phytoestrogens	405

List of Tables

1.1.	The Vitamins	3
1.2.	Compounds that Were at One Time Assigned Vitamin	
	Nomenclature, But Are Not Considered to Be Vitamins	5
1.3.	Marginal Compounds that Are (Probably) Not Dietary Essentials	6
1.4.	Compounds that Are Not Dietary Essentials, But May Have Useful	
	Protective Actions	7
1.5.	Reference Nutrient Intakes of Vitamins, U.K., 1991	13
1.6.	Population Reference Intakes of Vitamins, European Union, 1993	14
1.7.	Recommended Dietary Allowances and Acceptable Intakes for	
	Vitamins, U.S./Canada, 1997–2001	15
1.8.	Recommended Nutrient Intakes for Vitamins, FAO/WHO, 2001	16
1.9.	Terms that Have Been Used to Describe Reference Intakes of	
	Nutrients	21
1.10.	Toxicity of Vitamins: Upper Limits of Habitual Consumption and	
	Tolerable Upper Limits of Intake	26
1.11.	Labeling Reference Values for Vitamins	27
2.1.	Prevalence of Vitamin A Deficiency among Children under Five	61
2.2.	WHO Classification of Xerophthalmia	63
2.3.	Biochemical Indices of Vitamin A Status	65
2.4.	Reference Intakes of Vitamin A	67
2.5.	Prudent Upper Levels of Habitual Intake	69
3.1.	Nomenclature of Vitamin D Metabolites	79
3.2.	Plasma Concentrations of Vitamin D Metabolites	80
3.3.	Genes Regulated by Calcitriol	90
3.4.	Plasma Concentrations of Calcidiol, Alkaline Phosphatase,	
	Calcium, and Phosphate as Indices of Nutritional Status	104
3.5.	Reference Intakes of Vitamin D	105
4.1.	Relative Biological Activity of the Vitamin E Vitamers	111
4.2.	Responses of Signs of Vitamin E or Selenium Deficiency to Vitamin	
	E, Selenium, and Synthetic Antioxidants in Experimental Animals	123

Cambridge University Press	
978-0-521-12221-4 - Nutritional Biochemistry of the Vitamins, Second Edition	
David A. Bender	
Frontmatter	
More information	

xxii	Lis	st of Tables
4.3.	Indices of Vitamin E Nutritional Status	126
51	Reference Intakes of Vitamin K	146
6.1	Indices of Thiamin Nutritional Status	169
6.2	Reference Intakes of Thiamin	100
7.1	Ticsue Eleving in the Pat	176
7.1.	Urinary Excretion of Riboflavin Metabolites	170
7.2.	Reoxidation of Reduced Flavins in Flavonrotein Oxidases	187
7.4.	Reoxidation of Reduced Flavins in Flavin Mixed-Function Oxida	ses 190
7.5.	Indices of Riboflavin Nutritional Status	196
7.6.	Reference Intakes of Riboflavin	198
8.1.	Indices of Niacin Nutritional Status	227
8.2.	Reference Intakes of Niacin	228
9.1.	Pyridoxal Phosphate-Catalyzed Enzyme Reactions of Amino Act	ids 237
9.2.	Amines Formed by Pyridoxal Phosphate-Dependent	
	Decarboxylases	240
9.3.	Transamination Products of the Amino Acids	242
9.4.	Vitamin B ₆ -Responsive Inborn Errors of Metabolism	250
9.5.	Indices of Vitamin B ₆ Nutritional Status	251
9.6.	Reference Intakes of Vitamin B ₆	258
10.1.	Adverse Effects of Hyperhomocysteinemia	293
10.2.	Indices of Folate and Vitamin B ₁₂ Nutritional Status	315
10.3.	Reference Intakes of Folate	319
10.4.	Reference Intakes of Vitamin B ₁₂	320
11.1.	Abnormal Urinary Organic Acids in Biotin Deficiency and Multi	ple
	Carboxylase Deficiency from Lack of Holo-carboxylase Syntheta	ase
	or Biotinidase	333
13.1.	Vitamin C-Dependent 2-Oxoglutarate–linked Hydroxylases	367
13.2.	Plasma and Leukocyte Ascorbate Concentrations as Criteria of	
	Vitamin C Nutritional Status	375
13.3.	Reference Intakes of Vitamin C	377

Preface

In the preface to the first edition of this book, I wrote that one stimulus to write it had been teaching a course on nutritional biochemistry, in which my students had raised questions for which I had to search for answers. In the intervening decade, they have continued to stimulate me to try to answer what are often extremely searching questions. I hope that the extent to which helping them through the often conflicting literature has clarified my thoughts is apparent to future students who will use this book and that they will continue to raise questions for which we all have to search for answers.

The other stimulus to write the first edition of this book was my membership of United Kingdom and European Union expert committees on reference intakes of nutrients, which reported in 1991 and 1993, respectively. Since these two committees completed their work, new reference intakes have been published for use in the United States and Canada (from 1997 to 2001) and by the United Nations Food and Agriculture Organization/World Health Organization (in 2001). A decade ago, the concern of those compiling tables of reference intakes was on determining intakes to prevent deficiency. Since then, the emphasis has changed from prevention of deficiency to the promotion of optimum health, and there has been a considerable amount of research to identify biomarkers of optimum, rather than minimally adequate, vitamin status. Epidemiological studies have identified a number of nutrients that appear to provide protection against cancer, cardiovascular, and other degenerative diseases. Large-scale intervention trials with supplements of individual nutrients have, in general, yielded disappointing results, but these have typically been relatively short-term (typically 5-10 years); the obvious experiments would require lifetime studies, which are not technically feasible.

The purpose of this book is to review what we know of the biochemistry of the vitamins, and to explain the extent to which this knowledge explains

xxiii

xxiv

Preface

the clinical signs of deficiency, the possible benefits of higher intakes than are obtained from average diets, and the adverse effects of excessive intakes.

In the decade since the first edition was published, there have been considerable advances in our knowledge: novel functions of several of the vitamins have been elucidated; and the nutritional biochemist today has to interact with structural biochemists, molecular, cell, and developmental biologists and geneticists, as well as the traditional metabolic biochemist. Despite the advances, there are still major unanswered questions. We still cannot explain why deficiency of three vitamins required as coenzymes in energy-yielding metabolism results in diseases as diverse as fatal neuritis and heart disease of thiamin deficiency, painful cracking of the tongue and lips of riboflavin deficiency, or photosensitive dermatitis, depressive psychosis, and death associated with niacin deficiency.

This book is dedicated in gratitude to those whose painstaking work over almost 100 years since the discovery of the first accessory food factor in 1906 has established the basis of our knowledge, and in hope to those who will attempt to answer the many outstanding questions in the years to come.

August 2002

David A. Bender London