Mathematical Foundations of Imaging, Tomography and Wavefield Inversion

Inverse problems are of interest and importance across many branches of physics, mathematics, engineering and medical imaging. In this text, the foundations of imaging and wavefield inversion are presented in a clear and systematic way. The necessary theory is gradually developed throughout the book, progressing from simple wave-equation-based models to vector wave models. By combining theory with numerous MATLAB-based examples, the author promotes a complete understanding of the material and establishes a basis for real-world applications.

Key topics of discussion include the derivation of solutions to source radiation and scattering problems using Green-function techniques and eigenfunction expansions; the propagation and scattering of waves in homogeneous and inhomogeneous backgrounds; and the concepts of field time reversal and field back propagation and the key role that they play in imaging and inverse scattering.

Bridging the gap between mathematics and physics, this multidisciplinary book will appeal to graduate students working in established areas of inverse scattering and to researchers developing new computational imaging modalities. Additional resources, including solutions to end-of-chapter problems and MATLAB codes for all the examples presented in the book, are available online at www.cambridge.org/9780521119740.

Anthony J. Devaney is Distinguished Professor of Engineering at Northeastern University, Boston and he has worked in the general area of inverse problems for more than 40 years. He did his Ph.D. at the Institute of Optics at the University of Rochester and his thesis was supervised by Professor Emil Wolf. Professor Devaney has experience in geophysics inverse problems and inverse problems related to radar, optical and acoustic imaging. His patent on diffraction tomography (covered in Chapter 8 of this book) was selected as one of the top 50 patents from Schlumberger Doll Research (the principal basic research center of the Schlumberger Corporation) over its first 50 years of existence.

Mathematical Foundations of Imaging, Tomography and Wavefield Inversion

ANTHONY J. DEVANEY Northeastern University, Boston

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521119740

© A. J. Devaney 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Devaney, Anthony J. Mathematical foundations of imaging, tomography and wavefield inversion / Anthony J. Devaney, Northeastern University, Boston. pages cm ISBN 978-0-521-11974-0 (hardback) 1. Wave equation. 2. Inverse problems (Differential equations) I. Title. QC174.26.W28D382 2012 515'.357-dc23 2012000073

ISBN 978-0-521-11974-0 Hardback

Additional resources for this publication at www.cambridge.org/9780521119740

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pı	reface			page xv
1	Radiat	ion and i	nitial-value problems for the wave equation	1
	1.1	The rad	diation problem	1
		1.1.1	Fourier integral representations	2
	1.2	Green	functions	6
		1.2.1	Retarded and advanced Green functions	7
		1.2.2	Frequency-domain Green functions	9
	1.3	Green-	function solutions to the radiation problem	12
		1.3.1	The primary field solution	14
		1.3.2	Representation of the radiated field in terms of boundary	
			values via the Kirchhoff-Helmholtz theorem	16
		1.3.3	The interior field solution	18
	1.4	The ini	itial-value problem for the wave equation	20
		1.4.1	Uniqueness	21
		1.4.2	Field back propagation	21
	1.5	Freque	ency-domain solution of the radiation problem	22
		1.5.1	The radiation pattern and the Sommerfeld radiation	
			condition	23
	1.6	Radiate	ed power and energy	25
	1.7	Non-ra	idiating sources	27
		1.7.1	Non-radiating sources in the frequency domain	29
		1.7.2	A source decomposition theorem	31
		1.7.3	Essentially non-radiating sources	33
		1.7.4	The field uniqueness theorem	35
	1.8	Surface	e sources	36
		1.8.1	Non-radiating surface sources	38
		1.8.2	Active object cloaking	39
	Furth	er readin	g	40
	Probl	ems		41
2	Radiat	ion and b	oundary-value problems in the frequency domain	43
	2.1	Freque	ncy-domain formulation of the radiation problem	43
		2.1.1	Analytic-signal representation of time-domain fields	44
		2.1.2	The Helmholtz equation	45
		2.1.3	Lorentz dispersive medium	45

v

vi		Contents	
		2.1.4 The Sommerfeld radiation condition in dispersive media	47
		2.1.5 Incoming- and conjugate-wave radiation conditions	48
	2.2	Green functions	50
		2.2.1 Green functions in two space dimensions	52
	2.3	Time-domain Green functions	53
		2.3.1 Key features of the time-domain Green functions	54
	2.4	Green-function solution of the radiation problem	55
		2.4.1 Solution of the radiation problem in two space dimensions	57
	2.5	The Kirchhoff–Helmholtz representation of the radiated field	58
		2.5.1 The interior field solution and field back propagation	59
	2.6	Radiated power and energy	60
	2.7	Non-radiating and essentially non-radiating sources in dispersive media	63
		2.7.1 Non-radiating sources and the radiation pattern	63
	•	2.7.2 Essentially non-radiating sources	64
	2.8	Boundary-value problems for the Helmholtz equation	65
		2.8.1 The interior boundary-value problem	67
		2.8.2 The exterior boundary-value problem for closed boundaries	68 70
		2.8.3 The exterior boundary-value problem for open boundaries	/0
	2.0	2.8.4 Symmetry of the Green functions	/1
	2.9	2.9.1 The Rayleigh–Sommerfeld solution for two-dimensional	12
		wavefields	76
	2 10	2.9.2 Rayleign-Sommerfeld representation of the radiated field	/0 77
	2.10	Solution of the RS problem using the Heimholtz identities	// 70
	2.11	2.11.1 The inverse DS houndary value problem	70
		2.11.1 The inverse KS boundary-value problem	/9 80
	2 1 2	2.11.2 Connection with wavenetic time reversal	00 81
	2.12	2 12 1 Non radiating surface sources	82
	Furth	er reading	84
	Probl	ems	85
3	Eigent	function expansions of solutions to the Helmholtz equation	87
	3.1	Separation of variables and the Sturm-Liouville problem	87
		3.1.1 The Sturm–Liouville problem	88
	3.2	Cartesian coordinates	89
		3.2.1 Homogeneous plane-wave expansions	90
		3.2.2 Plane-wave expansions that include inhomogeneous plane waves	92
		3.2.3 Plane-wave expansions involving evanescent plane waves	94
	3.3	Spherical coordinates	99
	3.4	Multipole expansions	104
		3.4.1 Multipole expansions of the Dirichlet and Neumann Green	107
		tunctions	107
		3.4.2 Plane-wave expansions of the multipole fields	110

vii		Contents						
		35	Circula	r cylindrical coordinates	111			
		3.6	Two-di	mensional wavefields	113			
		5.0	3.6.1	Polar coordinates	113			
		Furth	er readin	g	116			
		Probl	ems		116			
	4	Angul	ar-spectru	m and multipole expansions	118			
		4.1	The We	eyl expansion	118			
			4.1.1	The angular-spectrum expansion for the conjugate-wave Green function	120			
			4.1.2	The angular-spectrum expansion of the incoming-wave Green function	121			
			4.1.3	Angle-variable forms of the Green-function expansions	122			
		4.2	The an	gular-spectrum expansion of the radiated field	125			
			4.2.1	The angle-variable form of the radiated field expansion	127			
			4.2.2	The angular spectrum and radiation pattern	127			
			4.2.3	The radiation pattern of a non-radiating source	129			
		4.3	Forwar	d and back propagation using the angular spectrum	129			
			4.3.1	Back propagation from the radiation pattern	133			
		4.4	Stabiliz	red field back propagation and the inverse boundary-value problem	133			
			4.4.1	Back propagation using the incoming-wave Green function	134			
			4.4.2	Back propagation using the conjugate-wave Green function and field time reversal	136			
		4.5	The ang	gular-spectrum expansion of the scalar wavelet field	137			
		4.6	Angula	r-spectrum expansions in two space dimensions	139			
			4.6.1	The angular-spectrum expansion of the solution to the 2D radiation problem	141			
			4.6.2	Two-dimensional forward and back propagation	142			
			4.6.3	The angle-variable form of the 2D angular-spectrum expansion	146			
		4.7	The Fre	esnel approximation and Fresnel transform	147			
			4.7.1	The 3D Fresnel approximation and Fresnel transform	148			
			4.7.2	The 2D Fresnel approximation	151			
		4.8	Multip	ble expansions	153			
			4.8.1	Multipole expansion of the radiated field	154			
			4.8.2	Forward and back propagation using the multipole expansion	155			
			4.8.3	Back propagation in the interior boundary-value problem	157			
			4.8.4	Back propagation from the radiation pattern	158			
		4.9	Multipo	ble expansions of two-dimensional wavefields	160			
		4.10	Connec	tion between the angular-spectrum and multipole expansions	161			
		4.11	Radiate	ed energy out of plane and spherical boundaries	163			
			4.11.1	Radiated energy into an infinite half-space	164			
			4.11.2	Radiated energy from a spherical region	166			
		Furth	er readin	g	167			
		Probl	ems		167			

5The inverse source problem1695.1The ISP for the wave equation1695.1.1The ISP integral equation1715.1.2The Porter-Bojarski integral equation1745.1.3Time reversal and the back-propagated field1765.1.4The ISP for surface sources1795.2.1The ISP for a planar surface source1795.2.2Solving the ISP integral equation1805.2.3Interpretation of the solution1825.3The ISP for 3D sources supported in plane-parallel slabs1835.3.1Solving for the source1845.3.2Limiting form as a surface source1845.3.3Singular of the source1845.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2045.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2145.7.2The solution to the far-field ISP2055.7.3Two-dimensional scalar wavelet source2205.8.1The 2D limited-view problem2235.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional sca	viii			Contents	
5.1 The ISP for the wave equation 169 5.1.1 The ISP integral equation 171 5.1.2 The Porter-Bojarski integral equation 174 5.1.3 Time reversal and the back-propagated field 176 5.1 The ISP for surface sources 179 5.2.1 The ISP for a planar surface source 179 5.2.2 Solving the ISP integral equation 180 5.2.3 Interpretation of the solution 182 5.3 The ISP for 3D sources supported in plane-parallel slabs 183 5.3.1 Solving for the source 184 5.3.2 Limiting form as a surface source 186 5.3.3 Time-reversal imaging for slab geometry 187 5.4 The Hilbert-space formulation of the ISP 188 5.4.1 The ange and null space of T 197 5.4.2 Singular value decomposition 194 5.4.3 The least-squares pseudo-inverse 198 5.4.5 Filtered back propagation imaging 210 5.5.1 Implementation of the SVD 203 5.5.2 The algorithm point-spread function 209 <th></th> <th>5</th> <th>The in</th> <th>werse source problem</th> <th>169</th>		5	The in	werse source problem	169
5.1.1The ISP integral equation1715.1.2The Porter-Bojarski integral equation1745.1.3Time reversal and the back-propagated field1765.1.4The ISP in terms of Dirichlet or Neumann boundary-value data1775.2The ISP for a planar surface source1795.2.1The ISP for a planar surface source1795.2.2Solving the ISP integral equation1805.2.3Interpretation of the solution1825.3The ISP for 3D sources supported in plane-parallel slabs1835.3.1Solving for the source1845.3.2Limiting form as a surface source1845.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.5.5The adjoint operator2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized source2105.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source <t< th=""><th></th><th>2</th><th>5.1</th><th>The ISP for the wave equation</th><th>169</th></t<>		2	5.1	The ISP for the wave equation	169
S.1.1The both Porter-Bojarski integral equation1745.1.2The Porter-Bojarski integral equation1745.1.3Time reversal and the back-propagated field1765.1.4The ISP in terms of Dirichlet or Neumann boundary-value data1775.2The ISP for surface sources1795.2.1The ISP for a planar surface source1795.2.2Solving the ISP integral equation1805.2.3Interpretation of the solution1825.3The ISP for 3D sources supported in plane-parallel slabs1835.3.1Solving for the source1845.3.2Limiting form as a surface source1865.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.4.4Time reversal and back-propagation imaging2105.5S.7.2The solution to the 2D far-field ISP in 2D space2145.7.1Implementation of the SVD2255.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.7.3Tw			5.1	5.1.1 The ISP integral equation	171
5.1.2Time reversal and the back-propagated field1765.1.3Time reversal and the back-propagated field1765.2The ISP for surface sources1795.2.1The ISP for a planar surface source1795.2.2Solving the ISP integral equation1805.2.3Interpretation of the solution1825.3The ISP for 3D sources supported in plane-parallel slabs1835.3.1Solving for the source1845.3.2Limiting form as a surface source1865.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The solution to the far-field ISP2035.5.2The solution to the SVD2035.5.3The reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem<				5.1.2 The Porter_Bojarski integral equation	174
5.1.4The ISP in terms of Dirichlet or Neumann boundary-value data1775.2The ISP for surface sources1795.2.1The ISP for a planar surface source1795.2.2Solving the ISP integral equation1805.2.3Interpretation of the solution1825.3The ISP for 3D sources supported in plane-parallel slabs1835.3.1Solving for the source1845.3.2Limiting form as a surface source1865.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP in 2D space2145.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem2235.8.2Computing the singular system224<				5.1.2 Time reversal and the back-propagated field	176
5.2The ISP for surface sources1795.2.1The ISP for a planar surface source1795.2.2Solving the ISP integral equation1805.2.3Interpretation of the solution1825.3The ISP for 3D sources supported in plane-parallel slabs1835.3.1Solving for the source1845.3.2Limiting form as a surface source1865.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The algorithm point-spread function2095.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8.1The 2D limited-view problem2225.8.2Computing the singular system224Further reading225Problems225				5.1.4 The ISP in terms of Dirichlet or Neumann boundary-value data	177
5.2.1The ISP for a planar surface source1795.2.2Solving the ISP integral equation1805.2.3Interpretation of the solution1825.3The ISP for 3D sources supported in plane-parallel slabs1835.3.1Solving for the source1845.3.2Limiting form as a surface source1845.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The lagorithm point-spread function2095.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8.1The 2D limited-view problem2225.8.2Computing the singular system2245.8.2Computing the singular system2245.8.2Computing the singular system225Problems2252256Scatterin			52	The ISP for surface sources	179
5.2.2Solving the ISP integral equation155.2.3Interpretation of the solution1825.3The ISP for 3D sources supported in plane-parallel slabs1835.3.1Solving for the source1845.3.2Limiting form as a surface source1865.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The glorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2235.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2306.1Potential scattering theory2306.2The Lip			5.2	5.2.1 The ISP for a planar surface source	179
5.2.3Interpretation of the solution1805.2.3Interpretation of the solution1825.3The ISP for 3D sources supported in plane-parallel slabs1835.3.1Solving for the source1845.3.2Limiting form as a surface source1865.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP and algorithm PSF2175.7.2The solution to the 2D far-field ISP and algorithm PSF2175.8.1The 2D limited-view problem2235.8.2Computing the singular system2245.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory230 <t< td=""><td></td><td></td><td></td><td>5.2.2 Solving the ISP integral equation</td><td>180</td></t<>				5.2.2 Solving the ISP integral equation	180
5.3The ISP for 3D sources supported in plane-parallel slabs1835.3.1Solving for the source1845.3.2Limiting form as a surface source1865.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2035.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8.1The 2D limited-view problem2225.8.2Computing the singular system2245.8.1The 2D limited-view problem2235.8.2Computing the singular system2245.8.1The 2D limited-view problem2256Scattering theory2306.2 <t< td=""><td></td><td></td><td></td><td>5.2.2 Interpretation of the solution</td><td>182</td></t<>				5.2.2 Interpretation of the solution	182
5.3.1Solving for the source1845.3.2Limiting form as a surface source1865.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem2225.8.2Computing the singular system224Further reading225Problems2256Scattering theory2306.2.1The Lippmann–Schwinger equation for the full Green function2336.2.2The formal solution to the LS equation2346.3.1Scattering from homogeneous spheres and cyli			53	The ISP for 3D sources supported in plane-parallel slabs	183
5.3.2Limiting form as a surface source1865.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.4.4Time reversal and back-propagation imaging2105.5.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem225Problems2256Scattering theory2306.2The Lippmann–Schwinger equation2326.2.1The Lippmann–Schwinger equation2346.3.1Scattering from homogeneous spheres and cylinders2356.3.1Scattering from homogeneous spheres and cylinders2356.3.1Scatteri			5.5	5.3.1 Solving for the source	184
5.3.3Time-reversal imaging for slab geometry1875.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2306.2The Lippmann–Schwinger equation for the full Green function2336.3.1Scattering from homogeneous spheres and cylinders2366.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from homogeneous sphere236				5.3.2 Limiting form as a surface source	186
5.4The Hilbert-space formulation of the ISP1885.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2306.2The Lippmann-Schwinger equation for the full Green function2336.2.2The formal solution to the LS equation2346.3Scattering from homogeneous spheres and cylinders2366.3.1Scattering from homogeneous sphere sons phere2366.3.2Scattering from homogeneous sphere2366.3.4Scattering from				5.3.3 Time-reversal imaging for slab geometry	187
5.1File The adjoint operator1915.4.1The adjoint operator1915.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2306.2The Lippmann–Schwinger equation2336.3.1Scattering from homogeneous penetrable objects2336.3.1Scattering from homogeneous sphere2366.3.2Scattering from homogeneous sphere236			54	The Hilbert-space formulation of the ISP	188
5.4.2Singular value decomposition1945.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2306.2The Lippmann–Schwinger equation for the full Green function2336.3.1Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from homogeneous sphere2366.3.2Scattering from homogeneous sphere236			5.1	5.4.1 The adjoint operator	191
5.4.3The range and null space of \hat{T} 1975.4.4The least-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2235.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2306.2The Lippmann–Schwinger equation for the full Green function2336.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from homogeneous spheres and cylinders2366.3.2Scattering from homogeneous spheres and cylinders2366.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from homogeneous spheres and cyl				5.4.2 Singular value decomposition	194
5.4.4The lagt-squares pseudo-inverse1985.4.5Filtered back propagation and back-propagation imaging2015.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2306.2The Lippmann-Schwinger equation for the full Green function2336.3.1Scattering from homogeneous spheres and cylinders2366.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from homogeneous sphere2376.3.1Scattering from homogeneous sphere2366.3.2Scattering from homogeneous spheres and cylinders2366.3.1Scattering from homogeneous sphere2366.3.2Scattering from homogeneous sphere2366.3.1Scattering from homogeneous sphere2366.3.2Scattering from homogeneous sphere2367.3.1 </td <td></td> <td></td> <td></td> <td>5.1.2 Singular value decomposition 5.4.3 The range and null space of \hat{T}</td> <td>197</td>				5.1.2 Singular value decomposition 5.4.3 The range and null space of \hat{T}	197
5.4.5 Filtered back propagation and back-propagation imaging 201 5.5 The antenna-synthesis problem 202 5.5.1 Implementation of the SVD 203 5.5.2 The solution to the far-field ISP 206 5.5.3 The algorithm point-spread function 209 5.6 Picard's condition and minimum-sized sources 211 5.7 Antenna synthesis and the far-field ISP in 2D space 214 5.7.1 Implementation of the SVD 215 5.7.2 The solution to the 2D far-field ISP and algorithm PSF 217 5.7.3 Two-dimensional scalar wavelet source 220 5.8 The limited-view problem 222 5.8.1 The 2D limited-view problem 223 5.8.2 Computing the singular system 224 Further reading 225 225 6 Scattering theory 230 230 6.2 The Lippmann–Schwinger equation 232 232 6.2 The Lippmann–Schwinger equation 233 232 6.3 Scattering from homogeneous penetrable objects 235 235 6.				5.4.4 The least-squares pseudo-inverse	198
5.5The antenna-synthesis problem2025.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2296.1Potential scattering theory2306.2.2The Lippmann–Schwinger equation for the full Green function2336.3.1Scattering from homogeneous pheres and cylinders2356.3.1Scattering from homogeneous spheres2356.3.2Scattering from homogeneous sphere2366.3.4Scattering from homogeneous spheres235				5.4.5 Filtered back propagation and back-propagation imaging	201
5.5Invalues by inclusion protochin2035.5.1Implementation of the SVD2035.5.2The solution to the far-field ISP2065.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2306.2The Lippmann–Schwinger equation2326.3Scattering from homogeneous penetrable objects2336.3Scattering from homogeneous spheres and cylinders2346.3.2Scattering from homogeneous sphere236			55	The antenna-synthesis problem	201
5.5.1The solution to the far-field ISP2065.5.2The algorithm point-spread function2095.5.3The algorithm point-spread function2095.5.4Time reversal and back-propagation imaging2105.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2306.1Potential scattering theory2306.2The Lippmann–Schwinger equation2326.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236			5.5	5.5.1 Implementation of the SVD	202
5.5.3 The obtained for the function 209 5.5.4 Time reversal and back-propagation imaging 210 5.6 Picard's condition and minimum-sized sources 211 5.7 Antenna synthesis and the far-field ISP in 2D space 214 5.7.1 Implementation of the SVD 215 5.7.2 The solution to the 2D far-field ISP and algorithm PSF 217 5.7.3 Two-dimensional scalar wavelet source 220 5.8 The limited-view problem 223 5.8.1 The 2D limited-view problem 224 Further reading 225 Problems 225 6 Scattering theory 230 6.2 The Lippmann–Schwinger equation 232 6.2.1 The Lippmann–Schwinger equation 232 6.3 Scattering from homogeneous penetrable objects 235 6.3.1 Scattering from homogeneous spheres and cylinders 236 6.3.2 Scattering from homogeneous spheres and cylinders 236				5.5.2 The solution to the far-field ISP	205
5.5.4 Time reversal and back-propagation imaging 210 5.6 Picard's condition and minimum-sized sources 211 5.7 Antenna synthesis and the far-field ISP in 2D space 214 5.7.1 Implementation of the SVD 215 5.7.2 The solution to the 2D far-field ISP and algorithm PSF 217 5.7.3 Two-dimensional scalar wavelet source 220 5.8 The limited-view problem 223 5.8.1 The 2D limited-view problem 223 5.8.2 Computing the singular system 224 Further reading 225 Problems 225 6 Scattering theory 230 6.2 The Lippmann–Schwinger equation 232 6.2.1 The Lippmann–Schwinger equation 232 6.3 Scattering from homogeneous penetrable objects 235 6.3.1 Scattering from homogeneous spheres and cylinders 236 6.3.2 Scattering from a homogeneous sphere 236				5.5.2 The algorithm point-spread function	200
5.6Picard's condition and minimum-sized sources2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2296.1Potential scattering theory2306.2The Lippmann–Schwinger equation2336.2.1The Lippmann–Schwinger equation for the full Green function2336.3.1Scattering from homogeneous pheres and cylinders2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236				5.5.4 Time reversal and back-propagation imaging	210
5.6Field of condition and minimum infer bounces2115.7Antenna synthesis and the far-field ISP in 2D space2145.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2296.1Potential scattering theory2306.2The Lippmann–Schwinger equation2336.2.1The Lippmann–Schwinger equation for the full Green function2336.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres2356.3.2Scattering from a homogeneous sphere236			56	Picard's condition and minimum-sized sources	211
5.7.1Implementation of the IV In 2D space2115.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2306.1Potential scattering theory2306.2The Lippmann–Schwinger equation2326.2.1The Lippmann–Schwinger equation for the full Green function2336.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236			5.0	Antenna synthesis and the far-field ISP in 2D space	211
5.7.1Implementation of the SVD2155.7.2The solution to the 2D far-field ISP and algorithm PSF2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2225.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2296.1Potential scattering theory2306.2The Lippmann–Schwinger equation2326.2.1The Lippmann–Schwinger equation for the full Green function2336.2.2The formal solution to the LS equation2346.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236			5.7	5.7.1 Implementation of the SVD	215
5.7.12The solution to the LD fail her for the agontum For2175.7.3Two-dimensional scalar wavelet source2205.8The limited-view problem2215.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2296.1Potential scattering theory2306.2The Lippmann–Schwinger equation2326.2.1The Lippmann–Schwinger equation for the full Green function2336.2.2The formal solution to the LS equation2346.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236				5.7.2 The solution to the 2D far-field ISP and algorithm PSF	213
5.8The limited-view problem2225.8The 2D limited-view problem2235.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2306.1Potential scattering theory2306.2The Lippmann–Schwinger equation2326.2.1The Lippmann–Schwinger equation for the full Green function2336.3Scattering from homogeneous penetrable objects2346.3Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236				5.7.3 Two-dimensional scalar wavelet source	220
5.8The finited view problem2235.8.1The 2D limited-view problem2235.8.2Computing the singular system224Further reading225Problems2256Scattering theory2206.1Potential scattering theory2306.2The Lippmann–Schwinger equation2326.3.1Scattering from homogeneous penetrable objects2346.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236			58	The limited view problem	220
5.8.1The LD inflict view problem2255.8.2Computing the singular system224Further reading225Problems2256Scattering theory2296.1Potential scattering theory2306.2The Lippmann–Schwinger equation2326.2.1The Lippmann–Schwinger equation for the full Green function2336.2.2The formal solution to the LS equation2346.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236			5.0	5.8.1 The 2D limited-view problem	222
Further reading225Further reading225Problems2296.1Potential scattering theory2306.2The Lippmann–Schwinger equation2326.2.1The Lippmann–Schwinger equation for the full Green function2336.2.2The formal solution to the LS equation2346.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236				5.8.2 Computing the singular system	223
6Scattering theory2296.1Potential scattering theory2306.2The Lippmann–Schwinger equation2326.2.1The Lippmann–Schwinger equation for the full Green function2336.2.2The formal solution to the LS equation2346.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236			Furth	er reading	224
6 Scattering theory2296.1 Potential scattering theory2306.2 The Lippmann–Schwinger equation2326.2.1 The Lippmann–Schwinger equation for the full Green function2336.2.2 The formal solution to the LS equation2346.3 Scattering from homogeneous penetrable objects2356.3.1 Scattering from homogeneous spheres and cylinders2366.3.2 Scattering from a homogeneous sphere236			Probl	ems	225
6.1Potential scattering theory2306.2The Lippmann–Schwinger equation2326.2.1The Lippmann–Schwinger equation for the full Green function2336.2.2The formal solution to the LS equation2346.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236		6	Scatte	ering theory	229
6.2The Lippmann–Schwinger equation2326.2.1The Lippmann–Schwinger equation for the full Green function2336.2.2The formal solution to the LS equation2346.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236			6.1	Potential scattering theory	230
6.2.1The Lippmann–Schwinger equation for the full Green function2336.2.2The formal solution to the LS equation2346.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236			6.2	The Lippmann–Schwinger equation	232
6.2.2The formal solution to the LS equation2346.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236				6.2.1 The Lippmann–Schwinger equation for the full Green function	233
6.3Scattering from homogeneous penetrable objects2356.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236				6.2.2 The formal solution to the LS equation	234
6.3.1Scattering from homogeneous spheres and cylinders2366.3.2Scattering from a homogeneous sphere236			6.3	Scattering from homogeneous penetrable objects	235
6.3.2 Scattering from a homogeneous sphere 236				6.3.1 Scattering from homogeneous spheres and cylinders	236
				6.3.2 Scattering from a homogeneous sphere	236

ix	Contents				
		6.3.3 Scattering from a homogeneous cylinder	238		
		6.3.4 Scattering from concentric cylinders	239		
	6.4	The scattering amplitude	240		
		6.4.1 The scattering amplitude in 2D space	242		
		6.4.2 Reciprocity and translation theorems for the scattering amplitud	e 244		
		6.4.3 Scattered field energy and the optical theorem	245		
	6.5	Computing the scattered field from the scattering amplitude	246		
		6.5.1 Field scattered by an arbitrary incident wave and the general-			
		ized scattering amplitude	247		
		6.5.2 Computing the scattering amplitude from scattered field data			
		over a plane	248		
		6.5.3 Multipole expansion of the scattered field	249		
		6.5.4 Multipole expansions of 2D scattered fields	251		
	6.6	The transition operator	253		
		6.6.1 The Lippmann–Schwinger equation for the transition operator	254		
	6.7	The Born series	255		
		6.7.1 The Born approximation	256		
	6.0	6.7.2 Incident plane waves	256		
	6.8	The Born approximation for spherically and cylindrically symmetric			
		scattering potentials	259		
		6.8.1 Born scattering from homogeneous cylinders	261		
	6.0	6.8.2 The error between the Born and exact scattering amplitudes	262		
	6.9	Non-scattering potentials	265		
		6.9.1 Non-scattering potentials within the Born approximation	266		
		6.9.2 Incluein plane waves	207		
		6.9.4 Almost invisible week conterers	5 209 260		
		6.9.5 Escentially non scattering potentials	209		
	6 10	The Putov approximation	270		
	0.10	6.10.1 The Ricatti equation for the complex phase of the field	271		
		6.10.2 The Liouville-Neumann expansion for the phase	272		
		6.10.3 The Bytov approximation	273		
		6.10.4 The short-wavelength limit	274		
		6 10 5 The Rytov transformation	275		
		6.10.6 A comparison of the Born and Rytov approximations	276		
		6.10.7 The hybrid approximation	278		
	6.11	Incident spherical waves and slant stacking	280		
		6.11.1 Slant stacking from arbitrary surfaces	282		
		6.11.2 Slant-stack computation of the scattering amplitude	282		
	Furth	er reading	283		
	Probl	lems	283		
7	7 Surfac	ce scattering and diffraction	285		
	7.1	Formulation of the scattering problem for non-penetrable scatterers	286		

X	Contents					
		7.1.1	The scattering amplitude	287		
		7.1.2	Liouville–Neumann expansion	288		
	7.2	Scatter	ing from simple shapes	289		
		7.2.1	Scattering from an infinite Dirichlet or Neumann plane	289		
		7.2.2	Scattering from a sphere	291		
		7.2.3	Scattering of a plane wave from a cylinder	293		
	7.3	The ph	ysical-optics approximation	295		
		7.3.1	Plane-wave incidence	298		
		7.3.2	Simulation	299		
	7.4	The Bo	jarski transformation and linearized inverse surface scattering	300		
		7.4.1	The generalized Bojarski transformation	304		
		7.4.2	Inverse scattering within the PO approximation	305		
	7.5	Kirchh	off diffraction theory	306		
		7.5.1	The Rayleigh–Sommerfeld alternative to the Kirchhoff			
			diffraction formula	308		
		7.5.2	More general diffraction problems	309		
		7.5.3	Algorithmic implementation of the diffraction formulas	310		
	7.6	Inverse	diffraction	314		
		7.6.1	Inverse diffraction using back propagation	315		
		7.6.2	The SVD formulation of the inverse diffraction problem	316		
		7.6.3	The full data case	316		
		7.6.4	The Slepian–Pollak theory	319		
	7.7	Determ	ining the shape of a surface scatterer	320		
		7.7.1	Surface reconstruction via back propagation	321		
		7.7.2	The SVD approach to surface reconstruction	325		
	Furth	er readin	g	331		
	Prob	lems		332		
8	Classi	cal inverse	escattering and diffraction tomography	333		
	8.1	Born ir	nverse scattering from far-field data	335		
		8.1.1	Born inversion from ideal data	336		
		8.1.2	The filtered back-propagation algorithm	339		
		8.1.3	Inverse scattering identity	340		
		8.1.4	The FBP algorithm in two space dimensions	342		
	8.2	Born ir	version from limited and non-perfect data	344		
		8.2.1	Non-perfect data	345		
		8.2.2	Limited-data case I	346		
		8.2.3	Limited-data case II	346		
	8.3	Non-ur	niqueness and non-scattering scatterers	347		
		8.3.1	Non-scattering potentials within the Born approximation	348		
	8.4	Hilbert	-space formulation of Born inverse scattering	349		
		8.4.1	Adjoint and composite operators	350		
		8.4.2	Singular value decomposition	351		
		8.4.3	Solution to the inverse scattering problem	353		

xi		Contents				
	8.5	Born inversion using non-plane-wave probes and arbitrary measure-				
		ment surfaces	354			
		8.5.1 Data collected on arbitrary surfaces	354			
		8.5.2 Incident spherical waves	357			
	8.6	Iterative algorithms	357			
		8.6.1 Limited-data problems	358			
		8.6.2 Incorporation of constraints	359			
	8.7	Tomographic formulation of inverse scattering	360			
		8.7.1 The Rytov approximation	361			
		8.7.2 The short-wavelength limit of DT	361			
		8.7.3 Computed tomography	362			
		8.7.4 The projection-slice theorem	364			
		8.7.5 The filtered back-projection algorithm	364			
		8.7.6 Computed tomography of circularly symmetric objects	366			
	8.8	Diffraction tomography	367			
		8.8.1 Hybrid formulation	367			
		8.8.2 Reduction to a set of 2D inverse scattering problems	368			
	8.9	Diffraction tomography in two space dimensions	370			
		8.9.1 The generalized projection-slice theorem	371			
		8.9.2 The filtered back-propagation algorithm	373			
		8.9.3 Diffraction tomography of circularly symmetric objects	375			
	8.10	Simulations of DT with ideal Rytov data	378			
	8.11	Three-dimensional diffraction tomography	381			
	Furth	er reading	384			
	Probl	ems	380			
9	Waves	s in inhomogeneous media	387			
	9.1	Background-medium Green functions	388			
		9.1.1 The reciprocity condition for the Green functions	389			
		9.1.2 Plane-wave scattering states	390			
	9.2	The radiation problem in non-uniform backgrounds	393			
		9.2.1 The Green-function solution to the radiation problem	393			
		9.2.2 The Kirchhoff–Helmholtz representation of the radiated field	394			
		9.2.3 The Porter–Bojarski integral equation	395			
		9.2.4 The radiation pattern of the field	396			
	9.3	Generalized plane-wave expansions	397			
		9.3.1 Generalized plane-wave expansions to the homogeneous				
		Helmholtz equation in a non-uniform medium	397			
		9.3.2 Generalized angular-spectrum expansions	400			
		9.3.3 Angular-spectrum expansion of the radiated field in non-				
		uniform media	401			
	9.4	Non-radiating sources in non-uniform media	402			
		9.4.1 Non-radiating sources and the radiation pattern	403			
	9.5	The inverse source problem	404			

xii		Contents	
		9.5.1 General formulation	2
		9.5.2 Singular value decomposition	2
		9.5.3 The least-squares pseudo-inverse solution of the ISP	2
	9.6	Solution of the ISP for spherically symmetric backgrounds	4
		9.6.1 Solution of the ISP for a piecewise-constant spherically	
		symmetric background	4
		9.6.2 Super-resolution	4
	9.7	Scattering in a non-uniform background medium	4
	9.8	The distorted-wave Born approximation	4
		9.8.1 The DWBA for a pair of concentric homogeneous cylinders	4
	9.9	Foldy–Lax theory	
	9.10	Inverse scattering within the DWBA	
		9.10.1 The far-field limited-view ISCP	
		9.10.2 Back-propagation imaging	
		9.10.3 The limited-view problem in a homogeneous background	
	9.11	The ISCP using data generated and acquired by sets of antennas	
	Furth	er reading	
	Proble	ems	
	10 Time-r	reversal imaging for systems of discrete scatterers	
	10.1	Experimental time-reversal imaging	
		10.1.1 Experimental time-reversal imaging in non-uniform media	
	10.2	Time-reversal imaging using a finite set of antennas	
		10.2.1 Experimental time-reversal imaging	
		10.2.2 Eigenvectors of the time-reversal matrix	
		10.2.3 Focusing with the eigenvectors of the time-reversal matrix	
	10.3	Computational time-reversal imaging	
		10.3.1 Singular value decomposition of the multistatic data matrix	
		10.3.2 DORT	
		10.3.3 Time-reversal MUSIC	
		10.3.4 Filtered DORT and multiple-frequency algorithms	
	10.4	The inverse scattering problem	
	Furth	er reading	
	Proble	ems	
	11 The el	ectromagnetic field	
	11.1	Maxwell equations	
		11.1.1 Maxwell equations for a homogeneous isotropic medium	
		11.1.2 Maxwell equations in the spatial frequency domain	
	11.2	The Helmholtz theorem	
	11.3	The EM radiation problem	
		11.3.1 The dyadic Green function	
		11.3.2 The radiation patterns	
		•	

xiii	Contents				
	11 /	Angular spectrum expansions of the redicted field	169		
	11.4	Angular-spectrum expansions of the angular anastrum expansion	408		
		of the EM field	460		
		11.4.2 Back propagation from the radiation patterns	409		
		11.4.2 The Cartesian-variable form of the angular-spectrum	470		
		expansion of the FM field	471		
		11.4.4 Forward and back propagation from planar boundary-value data	472		
	11.5	The Whittaker representation of the radiated fields	473		
	11.5	11.5.1 Boundary-value problems and field back propagation using	775		
		the Whittaker representation	476		
	11.6	Debye representation and multipole expansions of radiated fields	470		
	11.0	11.6.1 Multipole expansion of the radiated field	482		
	117	Vector spherical-harmonic expansion of the radiation pattern	484		
	11.7	The FM inverse source problem	485		
	11.0	11.8.1 The FM ISP for sources supported in spherical regions	485		
	11 9	Electromagnetic scattering theory	488		
	11.9	11.9.1 The Lippmann–Schwinger equations	489		
		11.9.2 Electromagnetic scattering amplitudes	490		
		11.9.3 angular-spectrum expansions	490		
	11.10	The Born approximation	491		
		11.10.1 Born scattering amplitudes	492		
		11.10.2 Born inverse scattering	493		
	Furthe	r reading	494		
	Proble	ems	494		
	Annendix	A Proof of the scattering amplitude theorems	496		
	A 1	Proof of the reciprocity theorem	496		
	A 2	Proof of the translation theorem	497		
	A.3	Proof of the optical theorem	497		
	Appendix	B Derivation of the generalized Weyl expansion	501		
	B.1	Off-shell Green functions and scattering wave states	501		
	B.2	Derivation of the generalized Weyl expansion	502		
	Reference	25	505		
	Index		515		

Preface

I started this book roughly 20 years ago with the intention of producing a finished product within a year or so. But reality in the form of government research grants and "publish or perish" soon set in and so now, at long last, I have finally finished. The final product has of course changed significantly over these intervening years, both in content and in breadth. My original plan was to put together a six- or seven-chapter treatise on basic "Fourier-based" coherent imaging and diffraction tomography complete with Matlab codes implementing the imaging and inversion algorithms presented in the text. The current book certainly includes this material, but also includes a host of other material such as the chapter on time-reversal imaging and the four chapters on the propagation and scattering of waves in homogeneous and inhomogeneous backgrounds. More importantly, the "Fourier-based" inversion schemes originally used to develop much of coherent imaging and linearized inverse scattering (diffraction tomography) have been replaced by the much more powerful singular value decomposition (SVD). This approach allows virtually all of the linearized inverse problems associated with the wave and Helmholtz equation both in homogeneous and in inhomogeneous backgrounds to be treated in a uniform "turn the crank" manner.

My work on imaging and wavefield inversion began as a graduate student under Professor Emil Wolf at the University of Rochester. Originally I had intended to pursue my Ph.D. in quantum optics, but had my plans changed significantly by an off-hand remark by Professor Wolf during one of our meetings. We were discussing the classical theory of imaging by lenses, at which point he asked the question "what exactly is an image?" The answer to that seemingly simple question set us off on a road that included non-radiating sources, non-scattering scatterers, and other bizarre objects that the mathematician would recognize as being members of the null space of the mapping from object to "image." While the purely non-radiating sources and non-scattering scatterers are in the null space of the mapping from object to image, there are other strange objects that I have chosen to call "essentially" non-radiating sources (or scatterers). These objects are not in the null space but are very close to it, having the property that they only radiate (or scatter) evanescent waves outside of their support and are the cause for instability of inverse problems related to the wave and Helmholtz equations. I have tried to couple these physical interpretations of non-uniqueness and instability to the purely mathematical view of these properties throughout the book. Indeed, the melding of physics with mathematics is one of my major goals in this book.

The general areas of imaging and inverse scattering are multidisciplinary in that they require a strong foundation in physics, mathematics, and signal processing. I have tried to include the necessary background in all three areas, but assume that the reader is already proficient in complex-variable theory and linear algebra at the senior

XV

xvi

Preface

undergraduate/first-year graduate level and has at least a rudimentary familiarity with the wave and Helmholtz equations in a homogeneous medium such as free space. I have also tried to emphasize the underlying physics of the various topics covered in the book but, unfortunately, at the expense of mathematical rigor. This is especially true in the development of time-independent scattering theory in Chapters 6 and 9, which follow the purely formal approach used in non-relativistic quantum scattering (collision) theory.

The vast majority of the book treats scalar wave theory, with only the last chapter devoted to vector waves in the form of the electromagnetic (EM) field. The reasons for this are that all of the essential ingredients of coherent imaging and inverse scattering are already contained in the scalar theory and that the vector theory, at least for the EM field, can be reduced to three or fewer coupled scalar wave problems. Indeed, by using the so-called Whittaker or Debye representations presented in Chapter 11, EM inverse source and scattering problems for planar or spherical geometries can be reduced to two uncoupled scalar wave problems that are treated exactly in the manner presented in earlier chapters of the book. I have also, for the most part, restricted the treatment of the various inverse problems to *linearized* formulations of the corresponding forward problems. The exceptions to this are the inverse source problem which, by its nature, is a linear problem and one of the formulations of inverse scattering from conducting surfaces in Chapter 7.

The goal of this book is to present the mathematical (and physical) *foundations* of imaging and wavefield inversion rather than to push specific inversion schemes or algorithms or to present detailed results of the use of such algorithms on real data. To this end, I have concentrated on simple yet representative Matlab-based examples that are easily understood and directly related to the theoretical development presented in the book. The myriad details that attend any actual application of these algorithms to real data are not presented. Such details include the methods required to retrieve the phase of an optical field in an optical-imaging or inverse-scattering algorithm and the need to align, usually through the use of digital filters, the outputs from antenna or transducer arrays in ultrasound or EM inverse-scattering or time-reversal imaging experiments.

Finally, a word about the references cited in the book. Originally I intended to include as complete a list as possible of the majority of papers and books by workers in the general field of inverse scattering and wavefield inversion. I soon found the list growing beyond bound and was forced to limit the list to those references that I felt to be directly related to the material presented in the book. The book is mostly about *linearized* formulations of inverse scattering and, thus, I have left out an enormous number of references, especially within the mathematics community, to exact non-linear approaches to inverse scattering. I have also left out virtually all references to applications since the book is about the underlying *theory* of linearized inverse scattering and is not concerned with applications of this theory in various fields such as optics, acoustics, etc. I apologize to the many researchers who may feel slighted by not being included in the bibliography or not being suitably referenced.

I would like to thank my former professor and good friend and colleague over the past (can it be 40?) years Emil Wolf. Much of the material in the book can be traced back to my Ph.D. thesis and to joint papers by Emil and myself. I would also like to thank my colleague of many years' standing Dr. George Sherman and the dozens of current and

xvii

Preface

former students and colleagues who collaborated on the development and application of the material presented in the book. Special thanks go to my former friend and colleague Alan Witten, who died unexpectedly in 2005. Alan, who was professor of geophysics at the University of Oklahoma, used acoustic diffraction tomography to help find and unearth seismosaurus, the longest dinosaur yet discovered (see *NY Times* "New X-Ray Technique Helps Dinosaur Hunters," Science Section, Dec. 12, 1989), and whose work was, at least partially, the motivation for the opening scenes in the original *Jurassic Park* movie. I would also like to thank Dr. Arje Nachman of the AFOSR and Dr. Richard Albanese, director of the mathematical products division at the Brooks Air Force Base in San Antonio, for financial and inspirational support over the past 20 years. Finally, I must thank Simon Capelin and the wonderful staff at Cambridge University Press. Simon first met me about the book in 1990 in my company office in downtown Boston to discuss the project that I promised would be finished in less than a year.