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STRUCTURED SURFACES AS

OPTICAL METAMATERIALS

Optical metamaterials are an exciting new field in optical science. A rapidly devel-

oping class of these metamaterials allow the manipulation of volume and surface

electromagnetic waves in desirable ways by suitably structuring the surfaces they

interact with. They have applications in a variety of fields, such as materials science,

photovoltaic technology, imaging and lensing, beam shaping, and lasing.

Describing techniques and applications, this book is ideal for researchers and

professionals working in metamaterials and plasmonics, as well as for those just

entering this exciting new field. It surveys different types of structured surfaces,

their design and fabrication, their unusual optical properties, recent experimental

observations, and their applications. Each chapter is written by an expert in that

area, giving the reader an up-to-date overview of the subject. Both the experimental

and theoretical aspects of each topic are presented.

alexei a. maradudin is a Research Professor in the Department of Physics

and Astronomy, at the University of California, Irvine. His research interests have

included lattice dynamics of perfect and imperfect crystals; surface excitations on

perfect and imperfect elastic, dielectric, and magnetic media; and the scattering of

light from elementary excitations in solids.
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6133, Domaine Universitaire de Saint Jerome, 13397 Marseille Cedex 20, France.

Catrysse, Peter B.

E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.

Davis, Christopher C.

Department of Electrical and Computer Engineering, University of Maryland,

College Park, MD 20742, USA.

Engheta, Nader

Department of Electrical and Systems Engineering, University of Pennsylvania,

Philadelphia, PA 19104, USA.

Fan, Shanhui

E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.

Fernández-Domı́nguez, A. I.

Departamento de Fisica Teorica de la Materia Condensada, Universidad

Autonoma de Madrid, E-28049 Madrid, Spain.

xiii

www.cambridge.org/9780521119610
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-11961-0 — Structured Surfaces as Optical Metamaterials
Edited by Alexei A. Maradudin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xiv List of contributors

Garcı́a-Vidal, F.

Departamento de Fisica Teorica de la Materia Condensada, Universidad

Autonoma de Madrid, E-28049 Madrid, Spain.

Grebel, Haim

Electronic Imaging Center, and the ECE Department at the New Jersey Institute

of Technology, Newark, NJ 07102, USA.

Izrailev, F. M.

Instituto de Fı́sica, Universidad Autónoma de Puebla, Apdo. Post. J-48, Puebla

72570, México.
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Preface

If a metamaterial can be defined as a deliberately structured material that possesses

physical properties that are not possible in naturally occurring materials, then

deliberately structured surfaces that possess desirable optical properties that planar

surfaces do not posses can surely be considered to be optical metamaterials. The

surface structures displaying these properties can be periodic, deterministic but not

periodic, or random.

In recent years interest has arisen in optical science in the study of such surfaces

and the optical phenomena to which they give rise. A wide variety of these phe-

nomena have been predicted theoretically and observed experimentally. They can

be divided roughly into those in which volume electromagnetic waves participate

and those in which surface electromagnetic waves participate. Both types of opti-

cal phenomena and the surface structures that produce them are described in this

volume.

The first several chapters are devoted to optical interactions of volume elec-

tromagnetic waves with structured surfaces. One of the earliest examples of a

structured surface that acts as an optical metamaterial, and the one that today

is perhaps the best known and most widely studied, is a metal film pierced by

a two-dimensional periodic array of holes with subwavelength diameters. It was

shown experimentally by Ebbesen et al. [1] that the transmission of p-polarized

light through this structure can be extraordinarily high at the wavelengths of the

surface plasmon polaritons supported by the film. “Extraordinarily high” in this

context refers to the observation that more than twice as much light is transmitted

as impinges on the holes. This paper stimulated a great deal of theoretical and

experimental work directed at elucidating the mechanism(s) responsible for the

extraordinarily high transmissivity, and at enhancing it even more. In the first chap-

ter, E. Popov and N. Bonod describe the theoretical and experimental studies of this

phenomenon, whose explanation at times has been the subject of some controversy.

xvii
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xviii Preface

Not all optical enhancement effects occur in transmission through structured

surfaces. In Chapter 2, T. V. Teperik discusses recent theoretical and experimental

work on the diffraction of light from a two-dimensional periodic lattice of sub-

micron voids (nanopores) situated beneath the surface of a metal in contact with

vacuum. This kind of structure supports both dispersive surface plasmon polaritons

at the vacuum–metal interface, and nondispersive void plasmons associated with

each void. One of the interesting and important consequences of the existence of the

latter type of excitation is the possibility of achieving omnidirectional total absorp-

tion of p- and s-polarized light of a specified wavelength incident on the structure

when the voids are filled with a dielectric medium. Moreover, as a consequence of

Kirchhoff’s law, such a structured surface can also exhibit omnidirectional black-

body emission at a resonant frequency that can be varied by varying the radius of

the dielectric-filled voids. Other interesting optical properties of nanoporous metal

surfaces are also discussed in this chapter.

The reflection of an optical plane wave from, and its transmission through,

yet another type of two-dimensional periodic planar structure is discussed by A.

Alú and N. Engheta in Chapter 3. The structure considered is a dense planar

array of nanoparticles, primarily metallic nanospheres whose diameter and periods

are smaller than the wavelength of the illuminating electromagnetic field, that are

treated in the dipolar approximation. The reflection and transmission spectra display

features arising from the plasmonic resonances of the individual nanoparticles, and

from the two-dimensional periodicity of the structure as a whole. It is shown

that structures of this type offer the possibility of basing highly reflective and/or

frequency-selective surfaces at optical frequencies on them, which can be used for

filtering, absorption, and radiation purposes.

A planar metamaterial is a planar two-dimensional surface of zero thickness that

is periodically structured on the sub-wavelength scale. In practice such a material is

represented by a single periodically patterned metal or dielectric layer that is very

thin compared to the wavelength of the light incident on it, and is often supported

by a transparent substrate. In a comprehensive review in Chapter 4, E. Plum and N.

Zheludev analyze polarization and propagation properties of these metamaterials

on the basis of such general principles as symmetry, Lorentz reciprocity, and

energy conservation. They show that suitably structured planar metamaterials can

display circular birefringence and circular dichroism, linear birefringence and linear

dichroism, as well as asymmetric transmission of circularly polarized light incident

on them from opposite directions.

The ability to control the propagation of light is important for a variety of

applications. In recent years a great interest has arisen in the negative refraction

of light as it passes through the interface between two media. This interest is due

to the fundamental importance of this effect, as well as to possible applications

www.cambridge.org/9780521119610
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-11961-0 — Structured Surfaces as Optical Metamaterials
Edited by Alexei A. Maradudin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface xix

of it. For example, a perfect lens can be created on the basis of a medium that

produces negative refraction, and sub-wavelength imaging can also be achieved by

the use of such a medium. Negative refraction has been achieved in two types of

materials. The first type is a metamaterial that possesses simultaneously a negative

dielectric permittivity and a negative magnetic permeability within some frequency

range [2]. Such a medium has a negative-index of refraction, and hence is often

referred to as a negative-index material. The first material with these properties

was fabricated by embedding arrays of split-ring resonators in a lattice of metal

wires [3]. The second type of material is a nonmagnetic metamaterial with a

positive dielectric permittivity. Such a material has a positive index of refraction,

and is often referred to as a positive-index material. Photonic crystals formed from

dielectric components can serve as positive-index materials that display negative

refraction. One of the mechanisms responsible for negative refraction in such

media is the presence in their photonic band structure of a surface of constant

frequency with a negative group velocity in some frequency range [4]. In this case

the Poynting vector of a wave packet is directed opposite to its wave vector, which

leads to negative refraction [5]. The negative group velocity of circularly polarized

electromagnetic waves of one handedness propagating in a gyrotropic medium also

leads to negative refraction in certain frequency ranges [6].

The types of metamaterials just described are bulk materials. However, negative

refraction of volume electromagnetic waves can also be achieved by the use of

suitably structured surfaces. In a recent study, Lu et al. [7] showed that negative

refraction can be achieved when light is incident from a dielectric medium with

a real positive refractive index n > 1 on a periodically corrugated interface with

air, at an angle of incidence θ0 that is greater than the critical angle for total

internal reflection, θ0 > θc = sin−1(1/n). In this situation the zeroth and all positive

orders of the light refracted into the air are suppressed, and by a suitable choice

of the period of the corrugation of the interface only the (−1)-order refracted

beam is nonzero. This mechanism for negative refraction has been confirmed

experimentally. These authors also show that by introducing the periodic surface

not on a homogeneous semi-infinite dielectric medium but on a planar multilayered

medium, the restriction θ0 > θc can be lifted. This prediction has also been verified

experimentally. W. T. Lu and S. Sridhar review this work in Chapter 5, and present

descriptions of several optical devices based on this approach to negative refraction.

A more general type of refraction is described by A. A. Maradudin et al. in

Chapter 6, where it is shown how to design and fabricate a two-dimensional

randomly rough surface that transforms a beam with a specified transverse intensity

distribution into a beam with a different specified intensity distribution on its

transmission through that surface. Such beam shaping is used in a variety of

applications from laser surgery to optical scanning. In this chapter it is also shown
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xx Preface

how to design and fabricate a circularly symmetric but radially random surface that

transforms a plane wave incident on it into a transmitted beam that does not spread

over a finite distance along the symmetry axis of the structure from the surface – a

pseudo-nondiffracting beam. Such beams can be used in precision alignment and

in laser machining, for example.

The preceding examples of structured surfaces that act as optical metamaterials

have all consisted of surfaces that are illuminated by volume electromagnetic

waves. However, the propagation of surface electromagnetic waves, and even their

existence, can be modified in specified desirable ways by structuring in suitable

ways the surfaces on which they propagate. Similarly, novel applications of these

waves can be realized by a suitable structuring of the surfaces supporting them.

For example, it has been known for some time that the planar surface of a

semi-infinite perfect conductor does not support a surface electromagnetic wave.

However, if a perfectly conducting surface is periodically corrugated, as in a clas-

sical grating, or is doubly periodically corrugated, as in a bigrating, it can support

a surface electromagnetic wave. These theoretical predictions have recently been

confirmed experimentally. The interesting properties of these surface waves, which

owe their existence to the structuring of the surfaces on which they propagate, are

described by A. I. Fernández-Domı́nguez et al. in Chapter 7.

As we have noted above, the negative refraction of volume electromagnetic

waves has been studied theoretically and experimentally by many investigators,

and several mechanisms for accomplishing such refraction have been explored,

including the use of a periodically corrugated dielectric surface [7]. Recently,

attention has been directed at the negative refraction of surface plasmon polari-

tons. Shin and Fan [8] proposed a metal–dielectric–metal structure that produces

all-angle negative refraction of a surface plasmon polariton incident on it. The neg-

ative refraction they predicted is not due to the structure producing it possessing

simultaneously a negative dielectric permittivity and a negative magnetic perme-

ability in some frequency range. Instead it arises because each structure supports

a surface plasmon polariton whose dispersion curve possesses a branch with an

isotropic negative group velocity. It has been known for some time that the exis-

tence in a medium of an elementary excitation that possesses a negative group

velocity within some frequency range is a sufficient condition for that medium to

display in that frequency range the negative refraction of light incident on it with

a frequency in that range [4, 5]. The theoretical and experimental aspects of the

negative refraction of a surface plasmon polariton are presented in Chapter 8 by

P. B. Catrysse et al.

There exists a commonly held belief that any randomness in a long one-

dimensional conductor leads to an exponentially small transmission due to the

Anderson localization of all of its eigenstates. However, the actual situation is
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subtler than this. It has been shown [9] that specific long-range correlations in a

scattering potential give rise to perfect electron wave transmission within any given

energy/frequency window. This result, which is known as selective transparency,

was confirmed in experiments on a single-mode waveguide possessing this type

of disorder. The experimental results clearly showed the mobility edges that sepa-

rate regions of perfect transparency from those with localized transport. As F. M.

Izrailev and N. M. Makarov point out in Chapter 9, these results suggested to them

that similar results should be observed in single-mode or multimode planar waveg-

uides with one of their surfaces randomly rough, when the rough surface profile

function has long-range correlations of a specific type. These authors present results

confirming their expectation for both single-mode and multimode waveguides.

A recently introduced class of metamaterials is one consisting of materials

designed in such a way that an object embedded in one of them is cloaked from

observation by electromagnetic waves propagating through the material. Perhaps

the most commonly employed approach to the design of such cloaks is trans-

formation optics [10, 11]. It predicts materials with dielectric permittivities and

magnetic permeabilities that possess coordinate dependencies that deform the path

of electromagnetic waves propagating in them to avoid spatial regions occupied

by the objects to be cloaked. This approach to the cloaking of two- and three-

dimensional objects, and other approaches that have been proposed, are reviewed

by C. C. Davis and I. I. Smolyaninov in Chapter 10. They then show how the

approach to the cloaking of two-dimensional objects in metamaterials designed by

transformation optics can be extended to the design of surface structures that cloak

surface defects from detection by surface plasmon polaritons, and produce the

“trapped rainbow” effect for guided waves, in which a suitably designed plasmonic

waveguide slows down and stops light of different wavelengths at different spatial

points along the waveguide. Experimental results demonstrating both effects are

presented.

In a planar waveguide consisting of a thin oxide layer sandwiched between

an air superstrate and a metallic substrate the electric field intensity of the surface

electromagnetic wave guided by this structure becomes a maximum at the interface

between air and the oxide layer as the waveguide thickness is made extremely thin

but finite. If the oxide layer is patterned with a periodic structure, e.g. by an array

of holes, a standing electromagnetic surface wave can be formed. Such a standing

wave enhances the interaction between a molecule placed on the air–oxide interface

and the electromagnetic field of the surface wave. This enhanced interaction can be

useful in surface-enhanced Raman spectroscopy, in the detection of molecules on

a surface, and as a source for coherent radiation (lasers). These applications, and

the physics underlying them, are described by H. Grebel in Chapter 11.
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The chapters constituting this book present an up-to-date survey of many aspects

of optical effects produced by structured surfaces. Yet, the topics covered in it do

not exhaust the optical phenomena to which suitably structured surfaces can give

rise. Indeed, they are limited only by our imagination. Nevertheless they provide

a good indication of the variety of these phenomena, and the kinds of surfaces

required for their realization, and help to indicate why this emerging field in optical

science will continue to generate more research activity and applications in the

future.

The editorial staff at the Cambridge University Press have my thanks for their

help in producing this book. Special thanks are due to Ms. Irene Pizzie for her

excellent copyediting of each manuscript.

I owe an enormous debt of gratitude to my colleague Dr. Tamara A. Leskova for

the many hours spent in ensuring the correct formatting of the chapters, in helping

to prepare the subject index, and in checking and correcting the references.

Finally, I wish to express my appreciation to the authors for the thought and care

they put into preparing their contributions.

Irvine, California Alexei A. Maradudin
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