Contents

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>ix</td>
</tr>
<tr>
<td>1.1 General Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Concepts and Mechanisms</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1 Self-excited oscillations and instabilities</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2 Argand diagrams and bifurcations</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3 Energy considerations</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Notation</td>
<td>13</td>
</tr>
<tr>
<td>1.4 Contents of the Book</td>
<td>14</td>
</tr>
<tr>
<td>2 Prisms in Cross-Flow – Galloping</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Introductory Comments</td>
<td>15</td>
</tr>
<tr>
<td>2.2 The Mechanism of Galloping</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1 The linear threshold of galloping</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2 Nonlinear aspects</td>
<td>24</td>
</tr>
<tr>
<td>2.3 Further Work on Translational Galloping</td>
<td>30</td>
</tr>
<tr>
<td>2.3.1 The effect of sectional shape</td>
<td>30</td>
</tr>
<tr>
<td>2.3.2 Novak’s “universal response curve” and continuous structures</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3 Unsteady effects and analytical models</td>
<td>43</td>
</tr>
<tr>
<td>2.3.4 Some comments on the flow field</td>
<td>45</td>
</tr>
<tr>
<td>2.3.5 Shear-layer reattachment</td>
<td>49</td>
</tr>
<tr>
<td>2.4 Low-Speed Galloping</td>
<td>50</td>
</tr>
<tr>
<td>2.5 Prisms and Cylinders with a Splitter Plate</td>
<td>55</td>
</tr>
<tr>
<td>2.6 Wake Breathing and Streamwise Oscillation</td>
<td>62</td>
</tr>
<tr>
<td>2.6.1 Wake breathing of the first type</td>
<td>62</td>
</tr>
<tr>
<td>2.6.2 Wake breathing of the second type</td>
<td>64</td>
</tr>
<tr>
<td>2.7 Torsional Galloping</td>
<td>66</td>
</tr>
<tr>
<td>2.7.1 General comments</td>
<td>66</td>
</tr>
<tr>
<td>2.7.2 Linear quasi-steady analysis</td>
<td>67</td>
</tr>
<tr>
<td>2.7.3 Nonlinear quasi-steady analysis</td>
<td>70</td>
</tr>
<tr>
<td>2.7.4 Disqualification of quasi-steady theory</td>
<td>72</td>
</tr>
<tr>
<td>2.7.5 Unsteady theory</td>
<td>75</td>
</tr>
<tr>
<td>2.8 Multi-Degree-of-Freedom Galloping</td>
<td>77</td>
</tr>
<tr>
<td>2.8.1 Quasi-steady models</td>
<td>77</td>
</tr>
<tr>
<td>2.8.2 Unsteady models</td>
<td>81</td>
</tr>
<tr>
<td>2.9 Turbulence and Shear Effects</td>
<td>81</td>
</tr>
<tr>
<td>2.10 Conjoint Galloping and Vortex Shedding</td>
<td>86</td>
</tr>
<tr>
<td>2.11 Elongated and Bridge-Deck Sections</td>
<td>90</td>
</tr>
<tr>
<td>2.12 Concluding Remarks</td>
<td>102</td>
</tr>
</tbody>
</table>

3 Vortex-Induced Vibrations	105
3.1 Elementary Case	105
3.2 Two-Dimensional VIV Phenomenology	108
3.2.1 Bluff-body wake instability	110
3.2.2 Wake instability of a fixed cylinder	112
3.2.3 Wake of a cylinder forced to move	115
3.2.4 Cylinder free to move	120
3.3 Modelling Vortex-Induced Vibrations	124
3.3.1 A classification of models	124
3.3.2 Type A: Forced system models	127
3.3.3 Type B: Fluidelastic system models	129
3.3.4 Type C: Coupled system models	132
3.4 Advanced Aspects	139
3.4.1 The issue of added mass	139
3.4.2 From sectional to three-dimensional VIV	146
3.4.3 VIV of noncircular cross-sections	149
3.4.4 Summary and concluding remarks	153

4 Wake-Induced Instabilities of Pairs and Small Groups of Cylinders	155
4.1 The Mechanisms	155
4.1.1 Modified quasi-steady theory	156
4.1.2 The damping-controlled mechanism	157
4.1.3 The wake-flutter mechanism	158
4.2 Wake-Induced Flutter of Transmission Lines	160
4.2.1 Analysis for a fixed windward conductor	162
4.2.2 Analysis for a moving windward conductor	183
4.2.3 Three-dimensional effects and application to real transmission lines	192
4.3 Fluidelastic Instability of Offshore Risers	195
4.3.1 Experimental evidence for the existence of fluidelastic instability in riser bundles	196
4.3.2 Analytical models	200

5 Fluidelastic Instabilities in Cylinder Arrays	215
5.1 Description, Background, Repercussions	215
5.2 The Mechanisms	220
5.2.1 The damping-controlled one-degree-of-freedom mechanism	220
5.2.2 Static divergence instability 223
5.2.3 The stiffness-controlled wake-flutter mechanism 224
5.2.4 Dependence of the wake-flutter mechanism on mechanical damping 227
5.2.5 Wake-flutter stability boundaries for cylinder rows 229
5.2.6 Concluding remarks 230

5.3 Fluidelastic Instability Models 232
5.3.1 Jet-switch model 232
5.3.2 Quasi-static models 235
5.3.3 Unsteady models 239
5.3.4 Semi-analytical models 249
5.3.5 Quasi-steady models 254
5.3.6 Computational fluid-dynamic models 261
5.3.7 Nonlinear models 265
5.3.8 Nonuniform flow 270

5.4 Comparison of the Models 274
5.4.1 Experimental support for and against Connors’ equation 275
5.4.2 Comparison of theoretical models with experimental data 277
5.4.3 State of the art 287

6 Ovalling Instabilities of Shells in Cross-Flow 291
6.1 A Historical Perspective 291
6.2 The Vortex-Shedding Hypothesis 293
6.3 Ovalling with No Periodic Vortex Shedding 296
6.3.1 Paidoussis and Helleur’s 1979 experiments 296
6.3.2 In search of a new cause 302
6.4 Further Evidence Contradicting Vortex-Shedding Hypothesis 304
6.4.1 Further experiments with cantilevered shells 304
6.4.2 Experiments with clamped-clamped shells 307
6.5 Counterattack by the Vortex-Shedding Proponents and Rebuttal 311
6.5.1 The “peak of resonance” argument 311
6.5.2 Have splitter plates been ineffectual? 312
6.5.3 Dénouement 313
6.6 Simple Aeroelastic-Flutter Model 314
6.6.1 Equations of motion and boundary conditions 315
6.6.2 Solution of the equations 317
6.6.3 Theoretical results and comparison with experiment 319
6.7 A Three-Dimensional Flutter Model 322
6.7.1 The model and methods of solution 323
6.7.2 Theoretical results 327
6.7.3 Comparison with experiment 329
6.7.4 Improvements to the theory 331
6.8 An Energy-Transfer Analysis 334
6.9 Another Variant of the Aeroelastic-Flutter Model 338
6.9.1 The flutter model 338
6.9.2 Typical results 340
6.9.3 An empirical relationship for U_{thr} 342
6.10 Concluding Remarks 344
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Rain-and-Wind-Induced Vibrations</td>
<td>345</td>
</tr>
<tr>
<td>7.1</td>
<td>Experimental Evidence</td>
<td>345</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Field cases</td>
<td>345</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Wind-tunnel experiments</td>
<td>346</td>
</tr>
<tr>
<td>7.2</td>
<td>Modelling Rainwater Rivulets</td>
<td>348</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Development of rivulets</td>
<td>348</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Tearing of rivulets</td>
<td>349</td>
</tr>
<tr>
<td>7.3</td>
<td>VIV, Galloping and Drag Crisis</td>
<td>351</td>
</tr>
<tr>
<td>7.4</td>
<td>Yamaguchi’s Model: A Cylinder-Rivulet-Coupled Instability</td>
<td>354</td>
</tr>
<tr>
<td>7.5</td>
<td>Concluding Remarks</td>
<td>355</td>
</tr>
</tbody>
</table>

Epilogue 357

Appendix A The Multiple Scales Method 359

Appendix B Measurement of Modal Damping for the Shells Used in Ovaling Experiments 361

References 365

Index 397