
1 Introduction

1.1 General Overview

Cross-flow-induced vibration of bluff bodies, i.e. bodies whose aspect is not small
compared with the streamwise dimension, are ubiquitous, in nature as well as in
man-made constructions. The wind-induced fluttering of leaves and tree branches
and the waving motions in wheat fields are examples of the former. The Aeolian
harp, going back perhaps 3000 years, is an example of the earliest realization and/or
exploitation of the existence of these vibrations made by man.

Perhaps the first documented and surviving realization of the existence of vortex
shedding as such goes back to two Renaissance paintings in Bologna and a sketch
by Leonardo da Vinci, thus, to the 14th and 15th centuries.∗ The modern study of
vortex shedding began in the late 19th century, with Strouhal (1878), Bénard (1908)
and von Kármán (1912). Studies on vortex-induced vibrations followed soon after;
lock-in, or shedding frequency synchronization, was first documented by Bishop &
Hassan (1964).

With such a venerable and long pedigree, it is not surprising that the topic of
cross-flow-induced vibrations and instabilities of bluff bodies, notably cylinders or
groups of cylinders, is truly vast. To make any headway in this topic, one must first
understand the fluid mechanics of the flow around bluff bodies, while stationary or
in motion, and the forces generated thereon. Because these depend on the Reynolds
number, roughness, flow confinement, aspect ratio, amplitude of motion and many
other factors, the task of documenting, categorizing and making sense of the volu-
minous amount of research done over the past 100 years or so is truly Herculean.
In this regard, one must pay tribute to the excellent work done by Zdravkovich
(1997, 2003); the task is so huge that the work covered in the first two volumes
already published, involving 1264 pages, has not yet reached the point of considering

∗ One painting from the end of the 14th century, attributed to Giovanni da Modena and found in
Bologna, depicts the Christ-bearing (Xριστóφoρos) San Cristoforo crossing a stream and shows an
alternating pattern of vortices downstream of his legs (Tokaty 1971; Sumner 1999). Another, entitled
Madona col Bambino tra i Santo Domenico, Pietro Martire e Cristoforo is a 15th-century mural in
the Basilica de San Domenico in Bologna, again showing vortices from the foot of St. Christopher
crossing a stream (von Kármán 1954; Zdravkovich 2003). The drawing by Leonardo da Vinci from
roughly the same period shows vortices in the wake of a pile in a stream (Lugt 1983; Blevins 1990;
Zdravkovich 1997; Mizota et al. 2000).

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-11942-9 - Fluid-Structure Interactions: Cross-Flow-Induced Instabilities
Michael P. Paidoussis, Stuart J. Price and Emmanuel de Langre
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521119429


2 Introduction

fluid-coupled, self-excited motions. The difficulty of this task is exacerbated by the
fact that, routinely, for decades now, there is hardly an issue of the Journal of Fluid
Mechanics or the Journal of Fluids and Structures, or indeed the Journal of Sound
and Vibration, the Journal of Wind Engineering and Industrial Aerodynamics or the
Journal of Fluids Engineering, without one or several papers related to cross-flow
about bluff bodies, the forces and motions induced thereby and so on. Thus, it is not
only that the accumulated knowledge is vast, but also that the accretion of knowledge
and experience on the topic continues to grow unabated, perhaps exponentially.∗

Of course, other books exist in which chapters may be found on cross-flow-
induced vibrations and instabilities, published over the past 25 years: by Blevins
(1977, 1990), Sarpkaya & Isaacson (1981), Chen (1987), Naudascher & Rockwell
(1994, 2005), Gibert (1998), Sumer & Fredsøe (1997), Au-Yang (2001), Axisa (2001),
de Langre (2001), Kaneko et al. (2008) and others. However, these books cover
several topics other than cross-flow-induced vibrations and instabilities, and in
Zdravkovich (1997, 2003) and the forthcoming Volume 3 of that work it is attempted
to cover the whole field of cross-flow about bluff bodies. In contrast, the present
book is more modest in scope and its aim more focussed.

In this book, the focus is on the interaction of the cross-flow with motions of
the bluff structure, presuming that the flow field and the forces associated with
prescribed motions of the structure are known a priori. Furthermore, the vista is
further limited by excluding extraneously induced excitation (EIE) and instability-
induced excitation (IIE) in Naudascher & Rockwell’s (1980, 1994) classification of
flow-induced oscillation phenomena. The subject matter in this book is therefore
broadly associated with movement-induced excitation (MIE) phenomena, in which
the excitation is intimately coupled with, indeed caused by, movements of the body.
Hence, the phenomena are self-excited. In the linear sense, these phenomena are
instabilities; i.e., as a parameter is incremented, a system hitherto in a quiescent
state becomes subject to self-excited oscillation – as discussed further in Section 1.2.
Hence, the topic is: self-excited oscillations involving bluff bodies in cross-flow.†

Why so much interest in bluff-body/flow interactions, indeed, in the subject of
this book? The immediate answer is that (i) bluff bodies, in particular, cylinders and
prisms, are ubiquitous in engineering structures, typically as components of larger
systems; (ii) in many cases these bluff bodies are subjected to flow (cross-flow);
and (iii) frequently problems arise, often in the form of self-excited oscillations, the
solution if not prevention of which necessitates understanding the fluid-structure in-
teraction mechanisms involved. Every engineering student learns about the Tacoma
Narrows Bridge disaster and may have seen the spectacular ciné-film of its col-
lapse. However, apart from bridges, cross-flow-induced vibrations occur in (i) heat
exchangers and other power-generation components; (ii) offshore structures, in-
cluding risers and submerged pipelines; (iii) high-rise buildings, silos and chimneys;

∗ In this respect, one has to marvel at Mickey Zdravkovich’s tenacity. As he has told the first author,
the main difficulty in writing his books was that, no sooner was a particular chapter closed and the
writing progressed to the next and subsequent ones, that it had to be reopened because interesting
and pertinent new information had been published in the meantime. And, of course, one cannot cry
“stop!” anymore than one can ignore the new knowledge.

† Here, of course, the definition of “bluff-bodies in cross-flow” is pleonastic, just as “slender body in
axial flow” is; however, the redundancy enhances the clarity of the definition.
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1.2 Concepts and Mechanisms 3

(iv) overhead transmission lines and cables; and within (v) fluid-manipulating ma-
chinery in mechanical and chemical plants, to give but a partial list. Thus, the flows
involved are either contained gas or liquid flows, or generally unconfined flows due
to wind and water currents.

In the long list of engineering applications just mentioned, “problems” arise as-
sociated with self-excited oscillations or cross-flow-induced instabilities. These prob-
lems range from short-term destruction of the structure to unacceptable long-term
wear (fretting) problems and fatigue. Some examples may be found in Paı̈doussis
(1980, 2006), Axisa (1993), Au-Yang (2001) and Kaneko et al. (2008). Many of these
are related to the power-generating industry, in particular, to nuclear plants, where
disclosure of all types of problems, including flow-induced problems, is mandatory
in many states. Other incidents, however, remain hidden from public view, their ex-
istence being surmised only by sudden upsurges in research funding; or, at the very
least, they are incompletely reported,∗ e.g. in the offshore industry.

It is opportune to contrast the research on cross-flow-induced instabilities to
that on axial-flow-induced ones. In the latter, much, though by no means all, of
the research work was curiosity-driven (Paı̈doussis 1998, 2004), with many of the
applications emerging 10 or 20 years later (Paı̈doussis 1993). For cross-flow, on the
other hand, much work was inspired by, or necessitated for, concrete applications.
This reflects the fact that, with the exception of some classes of axial-flow-induced
vibration, notably involving annular and leakage flows, catastrophic failure is rather
rare. For cross-flow situations, however, problems have abounded and are not all that
rare even today. In one subtopic alone, that of fluidelastic instabilities of cylinder
arrays in cross-flow, the cumulative damages incurred over a decade were estimated
at 1000 M$ (Paı̈doussis 2006).

Something that ought to be stressed is that flow-induced vibrations of structures
subject to cross-flow are inevitable and often innocuous. It is only when the amp-
litudes become large enough, as is often the case with flow-induced instabilities, that
they become worrisome. The main task of this book is to elucidate the mechanisms
underlying these instabilities and to provide means for predicting their occurrence.

It should also be pointed out that flow-induced vibrations and instabilities are not
always undesirable. For instance, naturally occurring flow-induced vibrations help in
promoting the dispersion of plant seeds (de Langre 2008). In addition, they can be
exploited for engineering purposes, e.g. in ocean-current-driven energy-harvesting
devices.

As stated in the Preface, it is here emphasized that the treatment in this book
is not exhaustive. Rather, the emphasis is very much on the fundamentals and on a
physical understanding of the mechanisms involved to the extent possible. Beyond
that, a full list of references guides the reader to the available literature in each
subtopic.

1.2 Concepts and Mechanisms

The purpose of this section is to clarify some of the terms and concepts referred to
in the foregoing and used extensively in this book, e.g. the concepts of instability

∗ Mainly to protect the corporate image on a trade mark, or for fear of litigation.
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4 Introduction
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Figure 1.1. A flexibly supported bluff body of mass
M ≡ ml in cross-flow.

and self-excited vibrations, in the process clarifying also some of the underlying
mechanisms.

1.2.1 Self-excited oscillations and instabilities

The truth about self-excited oscillations is that they are not truly self-excited. That is,
a mechanical system does not by itself spontaneously break into oscillation, unless
the definition of the system includes the source of energy, e.g. a fluid flow, which is
responsible for the oscillation (Den Hartog 1956, chapter 7; Magnus 1965, chapter 3).
As we shall see, however, the governing equation of motion may be written in a way
that the resulting oscillation appears to be self-excited.

Consider, for example, a flexibly supported bluff body which could be modelled
as a mass-dashpot-spring system, as shown in Figure 1.1, free to move in the direction
transverse to the flow; the cross-section of the body is uniform along its length
l (normal to the plane of the paper), so that its total mass M = ml, where m is
the mass per unit length. The bluff body is subjected to a fluid-dynamical force
Ff (ẏ, y), as well as a mechanical force Fm(t), e.g. a base excitation; y is the transverse
displacement and ẏ the corresponding velocity. Thus, we have

mlÿ + cẏ + ky = Ff (ẏ, y) + Fm(t), (1.1)

where the overdot denotes differentiation with respect to t. Here, l is assumed to
be sufficiently large for the flow around the body to be sensibly two-dimensional.
Suppose further that Ff may be expressed as 1

2ρU2hlCf 1 (ẏ, U) + 1
2ρU2hlCf 2 (y, U),

where h is a characteristic length (typically the diameter for a cylindrical body, or
the frontal height of the cross-section vis-à-vis the flow), and Cf 1 and Cf 2 are fluid-
dynamic force coefficients, respectively functions of ẏ and y, and weakly of the mean
flow velocity U. Velocity dependence may arise because the instantaneous angle
of attack of the flow on the body as the body oscillates is θ = tan−1(ẏ/U). Position
dependence may arise through proximity of the bluff body to, say, a wall, so that the
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1.2 Concepts and Mechanisms 5

fluid forces depend on the distance from the wall. In equation (1.1), it is presumed that
m = ms + ma, ms being the structural mass and ma the added or virtual fluid-dynamic
mass per unit length. For an oscillating body, the acceleration-related pressure field
gives rise to a force which may be written as malÿ, thus defining ma; for a dense fluid,
ma/ms is not negligible (e.g., for a circular cross-section, ma = ρ(π/4)D2 according
to potential flow theory, D being the diameter) – see Section 3.4.1. Thus, this could
have been incorporated in (1.2) as a third fluid-dynamical force, linearly dependent
on ÿ and independent of U, while taking m = ms.

Succinctly, the difference between Ff and Fm is that for y = 0 and ẏ = 0, Ff

will be zero (or a constant force that can be eliminated by a change of variable
from y to y∗ = y − y0). Thus, writing the equation in terms of y∗ and suppressing the
asterisk, we have

mlÿ + cẏ + ky = 1
2ρU2hlCf 1 (ẏ, U) + 1

2ρU2hlCf 2 (y, U) + Fm(t), (1.2)

where it is understood that if y = 0, ẏ = 0, the first two forcing functions (represent-
ing Ff (ẏ, y)) vanish; thus, they only arise because of motion, whereas Fm(t) is not
affected by the motion. Having served to clarify the distinction between itself and
Ff , we shall from now on ignore Fm(t).

We can next write equation (1.2) in dimensionless form by defining c/ml = 2ζωn

and k/ml = ω2
n, as well as

η = y/l, τ = ωnt, Ur = U/(ωnh), µr = ρh2/m, (1.3)

where Ur is the so-called reduced flow velocity and µr is a mass ratio, obtaining∗

η̈ + 2ζη̇ + η = 1
2µrU2

r Cf 1 (η̇, Ur) + 1
2µrU2

r Cf 2 (η, Ur), (1.4)

where the overdot is now d( )/dτ. It is assumed next, for simplicity, that Cf 1 may
be expressed as a function of η̇/Ur and Cf 2 as a function of η alone. For the purposes
of this illustrative example, let

1
2µrU2

r Cf 1 (η̇, Ur) = β1(Ur)η̇ − β3(Ur)η̇3, 1
2µrU2

r Cf 2 (η, Ur) = γ1(Ur)η − γ3(Ur)η3,

and hence equation (1.4) is written as

η̈ + [
2ζ − β1(Ur) + β3(Ur)η̇2] η̇ + [

1 − γ1(Ur) + γ3(Ur)η2] η = 0. (1.5)

Thus, at first glance, considering the quantities in square brackets as an effective
damping and an effective stiffness, the source of energy input in this autonomous
system is “hidden”.

Let us further assume that β1, β3, γ1 and γ3 are positive, monotonically increasing
functions of Ur in view of the weak dependence of Cf 1 and Cf 2 on Ur, and let us
consider the dynamics displayed by equation (1.5).

First, taking γ1 = γ3 = 0 for the moment, it is clear that for arbitrarily small
| η̇ | the dynamics is controlled by the linear terms and hence by the sign of 2ζ − β1:
if it is positive, as it must be for sufficiently small Ur, the damping is positive and
the oscillations will be damped; for higher Ur, however, it becomes negative, which

∗ Equation (1.4) holds true also if equation (1.1) is written in two-dimensional or “sectional” form.
In that case, m would replace ml in equation (1.2); similarly, k and c could represent distributed
quantities per unit length, or the total acting on the bluff body divided by l; also, l would be absent
from the right-hand side of (1.2). Equations (1.3) would be the same.
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6 Introduction

means negative damping and self-excited oscillations. Thus, the threshold of linear
instability of the system, Urc, occurs at β1(Urc) = 2ζ; according to linear theory, the
amplitude of the self-excited oscillation will grow indefinitely. However, taking the
β3(Ur)η̇3 term into account, it is clear that for sufficiently large | η̇3 |, the damping
ceases to be negative; indeed, the quantity in square brackets becomes zero on the
average, and one obtains limit-cycle oscillation. Thus, the growth of amplitude is self-
limiting. In this case, the limit cycle is stable, as both positive and negative increments
(perturbations) to η̇ are damped, returning the system to the limit cycle; the case of
an unstable limit cycle is discussed later.

From the nonlinear perspective, the linear threshold of instability is referred to
as a bifurcation, leading in this case from one stable state, the trivial equilibrium, to
another stable state, the limit-cycle oscillation. However, in engineering terms, the
linear threshold of instability at Urc is commonly called the threshold of instability,
regardless.

Bifurcation has a broader meaning than for the situation just discussed: it is
associated with any qualitative change in the state or dynamical behaviour of a
system, e.g. from periodic to quasiperiodic oscillation, or from quasiperiodic to
chaotic.

Let us next consider the statics of the system, clearly governed by the last
term of equation (1.5). For small | η |, the effective linear stiffness, 1 − γ1(Ur), is
positive, provided Ur is sufficiently small; for any small departure from η = 0, the
stiffness force restores the original static equilibrium. For higher Ur, however, we
may have a negative stiffness, 1 − γ1(Ur) < 0, leading to static instability, a static
divergence, implying a nonoscillatory amplification, without limit, of any small de-
parture from the now unstable trivial equilibrium. Taking the nonlinear term into
account, however, it is clear that two new equilibria are born for sufficiently large
| η |: at ηst = ±{[1 − γ1(Ur)]/γ3(Ur)}1/2, which may, in general, be stable or unstable
(in the sense of the equilibria of a pendulum at θ = 0 and π, respectively) – but for
the form of the stiffness term here always unstable.

The dynamics of the system of equation (1.5) could be displayed as a three-
dimensional plot of (η, η̇, Ur). Any “cut” thereof along the Ur-axis would yield a
phase-plane plot (η, η̇). To make things more interesting and instructive, we hence-
forth relax the requirement that β3(Ur) and γ3(Ur) be positive. Thus, consider the
system at Ur = Ur1, such that equation (1.5) becomes

η̈ − 0.02(1 − η̇2)η̇ + (0.95 − 0.018η2)η = 0. (1.6)

In view of the foregoing, this represents a system just beyond the onset of linear
self-excited oscillation; i.e. here 2ζ − β1(Ur1) = −0.02, while β3(Ur1) = 0.02. Also,
1 − γ1(Ur1) = 0.95 and γ3(Ur1) = −0.018.

The dynamics is displayed in Figure 1.2(a). It is seen that the origin (trivial
equilibrium) is unstable, and that a stable limit cycle exists at | η | � 1.1 (the oval
region purposely left blank for clarity). Trajectories for | η | < 1.1 and | η | > 1.1
but not too far away, spiral outwards and inwards, respectively, towards the limit
cycle. There are also two new fixed points, i.e. points of static equilibrium, at | η | =
(0.95/0.018)1/2 � 7.26. They are unstable; specifically, they are saddle points. In this
case, the basin of attraction of the limit cycle is the diagonal swath from the upper left
of the figure to the lower right, within the area delimited by the trajectories going
through the saddle points.
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Figure 1.2. Phase-plane diagrams for the system of equation (1.4) for different system
parameters: (a) for the system η̈ − 0.02(1 − η̇2)η̇ + (0.95 − 0.018η2)η = 0; (b) for the system
η̈ − 0.02(1 − η̇2)η̇ + (0.95 + 0.018η2)η = 0.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-11942-9 - Fluid-Structure Interactions: Cross-Flow-Induced Instabilities
Michael P. Paidoussis, Stuart J. Price and Emmanuel de Langre
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521119429


8 Introduction

For γ3(Ur1) = +0.018 in equation (1.5), i.e. when the equation of motion is

η̈ − 0.02(1 − η̇2)η̇ + (0.95 + 0.018 η2)η = 0, (1.7)

the saddle points disappear, as shown in Figure 1.2(b), and the basin of attraction
of the limit cycle covers the whole figure. Taking a global view of the dynamics, we
can say that the system is unstable in the small (i.e. in the region within the limit
cycle close to the origin), and stable in the large. In general, “small” and “large” are
suggested by the physics of the system, but may be subjective.

For γ3(Ur1) = 0.018 and β3(Ur1) = −0.02, i.e. for the equation

η̈ − 0.02(1 + η̇2)η̇ + (0.95 + 0.018 η2)η = 0, (1.8)

the stable limit cycle disappears also. This does not imply that the physical system
is unstable at all nonzero amplitudes. It simply means that the nonlinear model of
equation (1.8) is not accurate enough. A more accurate representation, e.g. involving
a positive β5(Ur1)η̇5, could again give rise to a stable limit cycle (see, e.g., Paı̈doussis
(1998, section 2.3)).

Next, consider the system of equation (1.5) at Ur2 < Ur1, such that 2ζ −
β1(Ur2) > 0. The equation of motion is now

η̈ + 0.02(1 + η̇2)η̇ + (0.95 + 0.018η2)η = 0. (1.9)

The limit cycle disappears and the trivial equilibrium becomes a stable fixed point.
Consider next another system, governed by

η̈ + 0.02(1 − η̇2 + 0.05η̇4) η̇ + (0.95 − 0.018η2)η = 0. (1.10)

The phase-plane plot is shown in Figure 1.3. In this case the blank oval at | η | � 1.1
is an unstable limit cycle, nesting within a stable limit cycle going through | η | � 6.2.
Thus, trajectories within the unstable limit cycle spiral towards the origin, and those
on the outside spiral towards the stable limit cycle – as do trajectories outside the
latter. This represents a not-too-rare system in practice: a system stable at the origin
which if lightly perturbed will return to the origin; but, if strongly perturbed to beyond
the unstable limit cycle, it will develop large-amplitude limit-cycle oscillations.

1.2.2 Argand diagrams and bifurcations

For an N-degree-of-freedom system or an N-mode discretization of a distributed
parameter system, let the N dimensionless eigenfrequencies be denoted by ωr and
the eigenvectors by {A}r, r = 1, . . . , N, and let the linear solution of the autonomous
system be expressed as

{q} =
N∑

r=1

{A}r eiωrτ. (1.11)

In general, ωr = Re(ωr) + i Im(ωr). It is clear that if for one of the ωr, say for
ωs, Im(ωs) is negative, the system is linearly unstable, since the solution will then
involve a term exp (αsτ), where Im(ωs) = −αs and αs > 0.

As one of the system parameters is varied, say the dimensionless flow velocity
u, the evolution of the ωr is often displayed as an Argand diagram, in which Im(ωr)
is plotted versus Re(ωr) with u as parameter.
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Figure 1.3. Phase-plane diagram for the version of the system of equation (1.4) described by
η̈ + 0.02(1 − η̇2 + 0.05η̇4)η̇ + (0.95 − 0.018η2)η = 0.

Figure 1.4 shows such diagrams, illustrating several ways in which the frequency
loci may cross from the stable +Im(ωr) half of the frequency plane to the unstable
−Im(ωr) half.

Figure 1.4(a) shows the onset of divergence via a pitchfork bifurcation∗ in the
first mode of a conservative system. As ω1 is purely imaginary for u > uc, this is
clearly a static instability.

Figure 1.4(b) illustrates loss of stability via Hopf bifurcation for a noncon-
servative system with zero structural damping (Im(ω2) = 0 at u = 0). Clearly, as
Re(ω2) �= 0 at u = uc, this is an oscillatory instability, signifying single-mode ampli-
fied oscillations or flutter.

Flutter can also arise through coalescence of two modes in the form of coupled-
mode flutter, as shown in Figure 1.4(c, d), again for systems with zero structural
damping. The fact that the eigenfrequencies are purely real prior to instability is
indicative of the system being conservative. The coupled-mode flutter displayed in
Figure 1.4(c) is via a so-called Hamiltonian Hopf bifurcation.

In Figure 1.4(d) the loci of the modes lie either on the Re(ω) or the Im(ω) axis,
but they are drawn just off the axes for clarity. The coupled-mode flutter in this case
is via a secondary bifurcation, i.e. after the system has lost stability by divergence – in

∗ Strictly speaking, the type of bifurcation involved is defined by the nonlinear terms in the equation
of motion. In this case, the flow-related nonlinearities in the stiffness term are cubic and similar to
those in a softening cubic spring. This is what gives rise to two stable static equilibria for u > uc.
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Figure 1.4. Argand diagrams illustrating loss of stability via (a) a pitchfork bifurcation of a
conservative system, leading to static divergence, (b) a Hopf bifurcation of a nonconservative
system, (c) a Hamiltonian Hopf bifurcation, leading to coupled-mode flutter, (d) a so-called
Paı̈doussis coupled-mode flutter, all for nondissipative systems; uc denotes the critical dimen-
sionless flow velocity.

this case, in both the first and second modes.∗ To distinguish it from the Hamiltonian
coupled-mode flutter, Done & Simpson (1977) christened it as Paı̈doussis coupled-
mode flutter, because it was first documented in a paper by Paı̈doussis & Issid (1974);
its principal characteristic is that, at onset, the frequency of oscillation is zero, but it
becomes finite as u is increased.

It is instructive to consider how these bifurcations are affected by the presence of
dissipative effects and nonlinearities. Figure 1.5 shows the effect of dissipation on the
bifurcations. It is clear that the bifurcations in Figure 1.5(a, b) are not qualitatively
different from those in Figure 1.4(a, b).

Figure 1.5(c) is distinctly different, however. The two modes nearly collide and
then veer away from each other (mode-veering phenomenon), and one of them
crosses the Re(ω)-axis to the unstable domain; thus, the coupled-mode flutter de-
volves to a form of single-mode flutter. In a sense, something similar is shown in
Figure 1.5(d), although the coupled-mode flutter in this case survives, but involves
the coalescence of two branches of the first mode.

∗ Another form involves the coalescence of the two branches of the same mode [see, e.g., Paı̈doussis
(1998, fig. 3.14); also Figure 1.5(d)].
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