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Preface to the second edition

30 Years later...

Looking back over these lectures, given at Duke University in 1979, I can
say with some pride that they contain early hints of a number of important
themes in modern arithmetic geometry. Of course, the flip side of that coin
is that they are now, thirty years later, seriously out of date. To bring them
up to date would involve writing several more monographs, a task best left
to mathematicians thirty years younger than me. What I propose instead is to
comment fairly briefly on several of the lectures in an attempt to put the reader
in touch with what I believe are the most important modern ideas in these
areas. The section on motives just below is intended as a brief introduction
to the modern viewpoint on that subject. The remaining sections until the last
follow roughly the content of the original book, though the titles have changed
slightly to reflect my current emphasis. The last section, motives in physics,
represents my recent research.

In the original volume I included a quote from Charlie Chan, the great Chi-
nese detective, who told his bumbling number one son “answer simple, but
question very very hard.” It seemed to me an appropriate comment on the sub-
ject of algebraic cycles. Given the amazing deep new ideas introduced into the
subject in recent years, however, I think now that the question remains very
very hard, but the answer is perhaps no longer so simple...

At the end of this essay I include a brief bibliography, which is by no means
complete. It is only intended to illustrate the various ideas mentioned in the
text.
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viii Preface to the second edition

Motives

Much of the recent work in this area is centered around motives and the con-
struction – in fact various constructions, due to Hanamura (1995), Levine
(1998), and Voevodsky (Mazza et al. 2006; Voevodsky et al. 2000) – of a trian-
gulated category of mixed motives. I will sketch Voevodsky’s construction as
it also plays a central role in his proof of the Bloch–Kato–Milnor conjecture
discussed in Lecture 5. Then I will discuss various lectures from the original
monograph.

Let k be a field. The category Cork is an additive category with objects
smooth k-varieties: Ob(Cork) = Ob(Smk). Morphisms Z : X → Y are finite
linear combinations of correspondences Z =

∑
niZi where Zi ⊂ X×Y is closed

and the projection πi : Zi → X is finite and surjective. Intuitively, we may think
of Zi as a map X → SymnY associating to x ∈ X the fibre f −1

i (x) viewed as a
zero-cycle on Y . There is an evident functor

Smk → Cork

which is the identity on objects.
A presheaf on a category C with values in an abelian categoryA is simply a

contravariant functor F : Cop → A. An A-valued presheaf F on Cork induces
a presheaf F|Smk on Smk. Intuitively, to lift a presheaf G from Smk to Cork one
needs a structure of trace maps or transfers f∗ : G(Z) → G(X) for Z/X finite.
Presheaves on Cork are referred to as presheaves with transfers.

For X ∈ Ob(Smk) one has the representable sheaf Ztr(X) defined by

Ztr(X)(U) = HomCork (U, X).

An important elaboration on this idea yields for pointed objects xi ∈ Xi

Ztr((X1, x1) ∧ · · · ∧ (Xn, xi))

:= Coker
(⊕

Ztr(X1 × · · · X̂i × · · · Xn)→ Ztr(
∏

Xi)
)
.

In particular, one defines Ztr(
∧n Gm) by taking Xi = A1 − {0} and xi = 1.

A presheaf with transfers F is called homotopy invariant if, with obvious
notation, i∗0 = i∗1 : F(U × A1) → F(U). The complex of chains C∗(F) on a
presheaf with transfers F is the presheaf of complexes (placed in cohomologi-
cal degrees [−∞, 0])

C∗(F) := U �→ · · · → F(U × ∆n)→ · · · → F(U × ∆0)

Here

(0.1) ∆n := Spec k[t0, . . . , tn]/(
∑

ti − 1)
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Preface to the second edition ix

is the algebro-geometric n-simplex. The boundary maps in the complex are
the usual alternating sums of restrictions to the faces ∆n−1 ↪→ ∆n defined by
setting ti = 0. The two restrictions

i∗0, i
∗
1 : C∗(F)(U × A1)→ C∗(F)(U)

are shown to be homotopic, so the homology presheaves Hn(C∗(F)) are homo-
topy invariant.

Maps f0, f1 : X → Y in Cork are A1-homotopic if there exists H : X×A1 → Y
in Cork such that f j = i∗jH. A1-homotopy is an equivalence relation, and A1-
homotopic maps induce homotopic maps

f0∗ � f1∗ : C∗Ztr(X)→ C∗Ztr(Y).

Voevodsky defines

Z(q) := C∗Ztr(
∧q Gm)[−q], q ≥ 0.

More precisely, the above complex is viewed as a complex of presheaves on
Smk and then localized for the Zariski topology. Motivic cohomology is then
defined (for q ≥ 0) as the hypercohomology of this complex of Zariski sheaves:

Hp
M(X,Z(q)) := Hp

Zar(X,Z(q)).

One has a notion of tensor product for presheaves on the category Cork, and
Ztr(X)⊗Ztr(Y ) = Ztr(X×Y ). In particular, Z(p)⊗Z(q)→ Z(p+q) so one gets
a product structure on motivic cohomology. In low degrees one has

H0
M(X,Z(0)) = Z[π0(X)],

Hp
M(X,Z(0)) = (0), p > 0,

Z(1) � Gm[−1].

Another important sign that this is the right theory is the link with Milnor
K-theory. (KMilnor∗ (k) is defined as the quotient of the tensor algebra on k× by
the ideal generated by quadratic relations a ⊗ (1 − a) for a ∈ k − {0, 1}.)
Theorem Hn

M(Spec k,Z(n)) � KMilnor
n (k).

The fact that the Zariski topology suffices to define motivic cohomology is
somewhat surprising because a Zariski open cover π : U → X does not yield a
resolution of Zariski sheaves

(0.2) · · · → Ztr(U ×X U)→ Ztr(U)→ Z(X)→ 0.

To remedy this, Voevodsky employs the Nisnevich topology. A morphism
π : U → X is a Nisnevich cover if for any field K/k one has U(K) � X(K).
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x Preface to the second edition

To see that (0.2) becomes exact when localized for the Nisnevich topology, one
uses the fact that any finite cover of a Hensel local ring is a product of local
rings.

The actual triangulated category of effective motives over k is a quotient cat-
egory of the derived category D−(ShNis(Cork)) of bounded-below complexes of
Nisnevich sheaves on Cork. One considers the smallest thick subcategory W
containing all cones of Ztr(X × A1)→ Ztr(X), and one defines

DMeff
Nis(k) := D−ShNis(Cork)[W−1].

Said another way, one formally inverts all morphisms with cones in W. Finally,
the motive associated to a smooth k-variety X is defined by

(0.3) M(X) := Ztr(X) ∈ DMeff
Nis(k).

The category of geometric motives DMeff
geo(k) is the thick subcategory in DMeff

Nis(k)
generated by the M(X).

One has the following properties:

Mayer-Vietoris

M(U ∩ V)→ M(U) ⊕ M(V)→ M(X)→ M(U ∩ V)[1]

is a distinguished triangle.

Künneth

M(X × Y ) = M(X) ⊗ M(Y ).

Vector bundle theorem

M(X) � M(V)

for V/X a vector bundle.

Cancellation Assume varieties over k admit a resolution of singularities.
Write M(q) := M ⊗ Z(q). Then

Hom(M,N) � Hom(M(q),N(q)).

The category of (not necessarily effective) motives is obtained by inverting the
functor M �→ M(1) in DMeff.

Projective bundle theorem For V/X a rank n + 1 vector bundle

M(P(V)) �
⊕n

i=0 M(X)(i)[2i].
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Preface to the second edition xi

Chow motives If X,Y are smooth projective, then

(0.4) Hom(M(X),M(Y )) � CHdimX(X × Y ).

The category of Chow motives over a field k has as objects triples
(X, p,m) with X smooth projective over k, p ∈ CHdimX(X × X)Q a projector
(i.e. p ◦ p = p) and m ∈ Z. The morphisms are given by

(0.5) Hom((X, p,m), (Y, q, n)) := q ◦ CHdimX+n−m(X × Y ) ◦ p.

It follows from (0.4) and the existence of projectors in DMeff
Nis(k) that the cate-

gory of Chow motives embeds in DMeff
Nis(k).

Motivic cohomology For X/k smooth, we have

(0.6) Hp
M(X,Z(q)) � HomDMeff

Nis(k)(Ztr(X),Z(q)[p]).

In fact, motivic cohomology is closely related to algebraic cycles, and this
relationship lies at the heart of modern cycle theory. There are a number of
ways to formulate things. I will use higher Chow groups because they relate
most naturally to arithmetic questions. Let ∆• be the cosimplicial variety as in
(0.1) above. DefineZq(X, n) to be the free abelian group of algebraic cycles on
X × ∆n which are in good position with respect to all faces X × ∆m ↪→ X × ∆n.
The complexZq(X, •) is defined by taking alternating sums of pullbacks in the
usual way:

(0.7) · · · → Zq(X, 2)→ Zq(X, 1)→ Zq(X, 0)→ 0.

(HereZq(X, n) is placed in cohomological degree−n.) The higher Chow groups
are defined by

(0.8) CHq(X, n) := H−n(Zq(X, •)).
For example, the usual Chow group CHq(X) = CHq(X, 0). Voevodsky proves
that for X smooth over a perfect field k one has

(0.9) Hp
M(X,Z(q)) � CHq(X, 2q − p) = Hp(Zq(X, •)[−2q]).

Beilinson and Soulé conjecture that the shifted chain complex
Zq(X, •)[−2q] ⊗ Q has cohomological support in degrees [0, 2q]. Actually,
their conjecture was formulated in terms of the γ-filtration in K-theory, but
one has the further identification

(0.10) Hp
M(X,Z(q)) ⊗Q � CHq(X, 2q − p) ⊗Q � grq

γKp(X) ⊗Q.
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xii Preface to the second edition

Lecture 1: Zero-cycles

The two most important ideas here are firstly the conjecture that surfaces with
geometric genus zero (pg = 0) should have Chow group of zero-cycles repre-
sentable. For S such a surface over C we expect an exact sequence

0→ Alb(S )→ CH0(S )
deg−−→ Z→ 0.

The group T (S ) defined in Lemma 1.4 is conjectured to be zero in
this case. Secondly, for any smooth projective variety X, the Chow
group of zero-cycles CH0(X) is conjectured (1.8) to carry a descending
filtration F∗CH0(X) which is functorial for correspondences such that

the map grp
FCH0(X)

Λ−→ grp
FCH0(Y ) induced by an algebraic cycle

Λ ∈ CHdimY (X × Y ) depends only on the class of Λ in cohomology.
Indeed, one may conjecture the existence of such a filtration on CHq(X)
for any q.

These conjectures remain unproven, but a very beautiful general picture,
based on the yoga of mixed motives, has been elaborated by A. Beilinson.
Interested readers should consult the important article by Jannsen (1994) and
the literature cited there. Let me sketch briefly (following Jannsen) the modern
viewpoint.

It is convenient to dualize the definition of M(X) (0.3). Assume X smooth,
projective of dimension d. Define (Hom means the internal Hom in DM)

M(X)∗ = HomDM(M(X),Z(0)).

The formula for the Chow group becomes

CHp(X) = H2p
M (X,Z(p)) = HomDM(Z(0),M(X)∗(p)[2p]).

One of Grothendieck’s standard conjectures about algebraic cycles is that
there exist Künneth projectors

πi ∈ CHd(X × X)Q/{homological equivalence}
inducing the natural projections H∗(X)→ Hi(X) on cohomology. If we assume
further that the ideal {homological equiv.}/{rational equiv.} ⊂ CHd(X × X)Q is
nilpotent (nilpotence conjecture), then the pri lift (non-canonically) to projec-
tors pri,rat ∈ CHd(X × X)Q and we may use (0.5) to decompose M(X)∗ ⊗ Q =⊕

i hi[−i] non-canonically as a direct sum of Chow motives. This idea is due
to J. Murre (1993a). The hope is that DM admits a t-structure such that

(0.11) Hi(M(X)∗ ⊗Q) = hi(X).
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Preface to the second edition xiii

The resulting spectral sequence

Ep,q
2 = HomDM(Z(0),Hq(M(X)∗( j)[p])⇒ HomDM(Z(0),M∗(X)( j)[p+q])

would yield filtrations on the Chow groups ⊗Q with

FνCH j(X)Q �
⊕2 j−ν

i=0 Ext2 j−i
DM (Q(0), hi(X)( j)),

grνFCH j(X)Q � ExtνDM(Q(0),H2 j−ν(X)( j)).

Murre suggests a natural strengthening of his conjectures, based on the idea
that one should be able for i ≤ d, to find representatives for πi supported on
Xi × X ⊂ X × X, where Xi ⊂ X is a general plane section of dimension i. For
example, π0 = {x} × X for a point x. Clearly this would imply πiCH j(X) = 0
for i < j, and since the conjectures imply

FνCH j(X) =
⊕2 j−ν

i=0 πi CH j(X),

we could conclude further that

FνCH j(X) = (0), ν > j.

Suppose, for example, that dim X = 2. We would get a 3-step filtration on
the zero-cycles: CH0(X) = F0 ⊃ F1 ⊃ F2 ⊃ (0), with

gr0
FCH0(X)Q = HomDM(Q(0), h4(X)(2)),

gr1
F = Ext1DM(Q(0), h3(X)(2)),

gr2
F = Ext2DM(Q(0), h2(X)(2)).

This fits perfectly with the ideas in Lecture 1. Indeed, Murre has computed
gr0 and gr1 and he finds exactly the degree and the Albanese. Of course, gr2

is more problematical, but note that the condition discussed in the text that
H2(X,Q�(1)) should be generated by divisors (which is equivalent to pg = 0
in characteristic zero) means h2(X)(2) � ⊕Q(1). (This is obvious for motives
modulo homological equivalence. Assuming the nilpotence conjecture, it holds
for Chow motives as well.) In this case, gr2

F can be computed for X = P2 when
it is clearly (0).

The conjectural “theorem of the hypersquare” (Proposition 1.12) can be
understood in motivic terms (Jannsen 1994, conj. 3.12) using the fact that
hn(X0 × · · · × Xn) is a direct summand of

⊕
hn(X0 × · · · X̂i · · · × Xn).

Clearly wrongheaded, however, is Metaconjecture 1.10, which stated that
F2CH0(X) is controlled by the polarized Hodge structure associated to H2(X).
Indeed, Ext2 = (0) in the category of Hodge structures. One may try (compare
Carlson and Hain 1989) to look at Exts in some category of variations of Hodge
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xiv Preface to the second edition

structure. In the absence of parameters supporting such variations (i.e. for X
over a number field), however, the Ext2 term should vanish and we should
have F2CH2(X) = (0).

Lectures 2 and 3: Intermediate jacobians

The modern point of view about intermediate jacobians is to view them as
Ext1(Z(0),H) where H is a suitable Hodge structure, and the Ext group is
taken in the abelian category of mixed Hodge structures (Carlson 1987). In the
classic situation, H = H2r−1(X,Z(r)) where X is a smooth projective variety.
Note in this case that H has weight −1. An extension 0→ H → E → Z(0)→ 0
would yield a mixed Hodge structure E with weights 0,−1 and Hodge filtration

EC = F−1EC ⊃ F0EC · · · .
Let f ,w ∈ EC be liftings of 1 ∈ Z(0) splitting the weight and Hodge filtrations
respectively. The difference between them w − f gives a well-defined class in
J = HC/(F0HC + HZ) which is the intermediate jacobian. To define the class
of a codimension-r cycle Z =

∑
ni Zi, let |Z| be the support of the cycle. We

have a cycle class with supports [Z] : Z→ H2r
|Z|(X,Z(r)) and a diagram

(0.12)
H2r−1
|Z| (X,Z(r)) H2r−1(X,Z(r)) H2r−1(X − |Z|,Z(r))

H2r
|Z|(X,Z(r)) H2r(X,Z(r))

Z 0

|Z|

H2r(X,Z(r))

The first group H2r−1
|Z| (X,Z(r)) is zero by purity, and vanishing of the lower

right-hand arrow will hold if Z is homologous to 0. Assuming this, we get the
desired extension of Hodge structures. (I believe this construction is due to
Deligne, though I do not have a good reference.)

For H any mixed Hodge structure with weights < 0 one has an analogous
construction. Note, however, the resulting abelian Lie group J need not be
compact. For example, Ext1(Z(0),Z(1)) � C× � S 1 × R. In Lecture 3, the
focus is on the case

H = H1(C,Z(2)) ⊗ H1
c (Gm,Z)⊗2 ⊂ H3

c (C × (Gm)2,Z(2)).
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Preface to the second edition xv

Here H has weight −3, and

Ext1MHS (Z(0),H) � H1(C,C)/H1(C,Z(2)) � H1(C,C×(1)).

At the time I was very much inspired by the work of Borel (1977) on reg-
ulators for higher K-groups of number fields. I believed that similar regula-
tors could be defined for arithmetic algebraic varieties more generally, and that
these regulators could be related to values of Hasse–Weil L-functions. This was
done in a very limited and ad hoc way in Bloch (1980, 2000), and then much
more definitively by Beilinson (1985). From the point of view of Lecture 3, the
regulator can be thought of as a relative cycle class map

Hp
M(X,Z(q))

(0.9)
� CHq(X, 2q−p)→ Ext1MHS (Z(0),H) = HC/(HZ+F0HC).

Here H = H2q−1(X × ∆2q−p, X × ∂∆2q−p; Z(q)). For details of this construc-
tion, see Bloch (2000). Other constructions are given in Bloch (1986b) and
Goncharov (2005).

The quotient of this Ext group by its maximal compact subgroup is the cor-
responding Ext in the category of R-Hodge structures. It is an R-vector space.
More generally one can associate to any mixed Hodge structure a nilpotent
matrix γ (Cattani et al., 1986, prop. 2.20), which is the obstruction to a real
splitting of the filtration by weights. These invariants arise, for example, if the
curve C in Lecture 3 is allowed to degenerate, so H1(C,Z) is itself a mixed
Hodge structure.

Lecture 4: Cohomological methods

This chapter contains basic information about algebraic K-theory, an important
tool in the study of algebraic cycles. I describe the “Quillen trick” and use it
to construct the Gersten resolution for K-sheaves and also Betti and étale co-
homology sheaves for smooth varieties. Briefly, one considers Zariski sheaves
Kq (resp.Hq

Betti, resp.Hq
et) associated to the presheaf U �→ Kq(U) of algebraic

K-groups (resp. U �→ Hq
Betti(U,Z), resp. U �→ Hq

et(U,Z/nZ)). One obtains
resolutions of these sheaves which enable one to identify, for example,

Hp(X,Kp) � CHp(X),

Hp(X,H p
Betti) � CHp(X)/{algebraic equivalence}.

(0.13)

I think it is fair to say that the resulting K-cohomology and the parallel
constructions for Betti and étale cohomology have had important technical ap-
plications but have not been the breakthrough one had hoped for at the time.
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Despite the Gersten resolution, it turns out to be difficult to interpret the result-
ing cohomology. Finiteness results, for example, are totally lacking. One nice
application of the Betti theory (see reference [6] at the end of Lecture 4) was
to falsify a longstanding conjecture about differential forms of the second kind
on varieties of dimension ≥ 3. The spectral sequence Ep,q

2 = Hp
Zar(X,Hq

Betti)→
Hp+q

Betti(X,Z) leads to an exact sequence

(0.14) H3
Betti(X)

a−→ Γ(X,H3)
b−→ H2(X,H2)

c−→ H4
Betti(X)

Using (0.13) one can identify Ker(c) in (0.14) with the Griffiths group of
cycles homologous to zero modulo algebraic equivalence, a group which in
some cases is known not to be finitely generated (Clemens 1983). It follows in
such cases that a is not surjective, indeed Coker(a) is infinitely generated. But
Γ(X,H3) is precisely the space of meromorphic 3-forms of the second kind;
that is meromorphic forms which at every point differ from an algebraic form
which is regular at the point by an exact algebraic form. Thus, unlike the case
of curves and surfaces, differential forms of the second kind do not necessarily
come from global cohomology classes in dimensions ≥ 3.

Lecture 5: The conjecture of Milnor–Bloch–Kato

Let F be a field and � a prime with 1/� ∈ K. The Milnor ring KM∗ (F)/� is gener-
ated by F×/F×� with relations given by Steinberg symbols f ⊗ (1− f ), f � 0, 1.
The conjecture in question states that the natural map to Galois cohomology

KM
∗ (F)/� → H∗(F, µ∗�)

is an isomorphism. My own contribution to this, which is explained in Lec-
ture 5, is a proof that KM

n (F) → Hn(F, µ⊗n
�

) is surjective when F has coho-
mological dimension n. For some years Voevodsky has been working on a
very difficult program, using his own motivic theory and results of M. Rost,
to prove the conjecture in complete generality. The proof is now complete (for
an outline with references, see the webpage of C. Weibel), but there is still no
unified treatment and the arguments use sophisticated techniques in algebraic
homotopy theory which I have not understood.

Geometrically, the result can be formulated as follows. Let i : X ↪→ Y be a
closed immersion of varieties over a field k of characteristic prime to �, and let
j : Y − X ↪→ Y be the open immersion. For simplicity I assume µ� ⊂ k so there
is no need to distinguish powers of µ�. Consider the exact sequence

Hp(Y,Z/�)
i∗−→ Hp(X,Z/�)

∂−→ Hp+1(Y, j!Z/�).
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Given a cohomology class c ∈ Hp(X) and a smooth point x ∈ X, there exists a
Zariski open neighborhood Y ⊃ U � x such that 0 = ∂(c)

∣∣∣
U
∈ Hp+1(U, j!Z/�).

As an exercise, the reader might work out how this is equivalent to the con-
jecture for F = k(X). Another exercise is to formulate a version of coniveau
filtration as described on page 52 for the group Hp+1(Y, j!Z/�) in such a way
that the image of ∂ lies in F1.

The whole picture of motivic cohomology with finite coefficients is now
quite beautiful (Voevodsky et al. 2000). Let X be a smooth, quasi-projective
scheme over an algebraically closed field k, and let m ≥ 2 be relatively prime
to the characteristic. Let r ≥ dim X. Then

H2r−n
M (X,Z/mZ(r)) � H2r−n

et (X,Z/mZ(r)).

Said another way, the cycle complexes Zr(X, •)[−2r], in equation (0.9), com-
pute the �-adic étale cohomology for all � prime to the characteristic, assuming
r ≥ dim X. The situation should be compared with that for abelian varieties A
where one has Tate modules T�(A) for all � and these calculate H1(A,Z�) for �
prime to the characteristic.

The subject of torsion in the Chow group seems to be important from many
points of view. I include in the bibliography a couple of relevant papers (Soulé
and Voisin 2005; Totaro 1997).

Lecture 6: Infinitesimal methods in motivic cohomology

The infinitesimal methods developed here were used also in my work on de
Rham–Witt cohomology (Bloch 1977).

It is fair to say that we still do not have an adequate notion of motivic coho-
mology. That is, we do not have contravariant cohomology functors defined on
singular schemes (e.g. on non-reduced schemes) with appropriate properties.
The notion of A1-homotopy invariance which is essential in Voevodsky’s work
is not what one wants. For example, if A is a non-reduced ring, then typically

H1
M(Spec A,Z(1)) = A× � A[t]× = H1

M(Spec A[t],Z(1)).

Curiously, the K-cohomology groups Hp
Zar(X,Kq) discussed in Lecture 4 do

have the correct functoriality properties, and in this lecture we examine what
can be learned from the infinitesimal structure of these groups.

An important step has been the work of Goodwillie (1986) computing the
K-theory of nilpotent ideals in characteristic zero in terms of cyclic homology.
To understand what motivic cohomology of an infinitesimal thickening might
mean, the reader could consult the two rather experimental papers Bloch and
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Esnault (1996, 2003). More definitive results have been obtained in Krishna
and Levine (2008), Park (2007), and Rülling (2007).

Assuming one has a good definition of motivic cohomology, what should
the “tangent space”

T Hp
M(X,Z(q)) := Ker

(
Hp(X × Spec k[ε],Z(q))→ Hp(X,Z(q))

)
mean? (Here ε2 = 0 and the map sends ε �→ 0.) To begin with, one should
probably not think of T HM as a tangent space in the usual sense. It can be
non-trivial in situations where the motivic cohomology itself is rigid, for ex-
ample for H3

M(k,Z(2)) with k a number field. Better, perhaps, to think of a
non-semistable moduli functor where jumps can occur at the boundary. For ex-
ample, consider the Picard scheme of (P1, {a, b}), that is isomorphism classes
of line bundles on P1 with trivializations at a, b. The degree-zero part is con-
stant Gm for a � b, but the limit as a → b is Ga given by degree-zero line
bundles on P1 with double order trivialization at a = b.

One important area of open questions about these groups concerns regu-
lators and relations with Euclidean scissors congruence groups. The regulator
for usual motivic cohomology is closely related to volumes in hyperbolic space
(Goncharov 1999), and it seems likely that there is a similar relation between
T HM and Euclidean volumes. Intuitively, this is another one of those limiting
phenomena where the radius of the hyperbolic disk is allowed to go to infinity
and lengths are scaled so in the limit one gets Euclidean geometry. It would be
nice to have a rigorous description of how this works.

Lecture 7: Diophantine questions

At the time of these lectures, I had expected that the Chow group of zero-cycles
on a rational surface would relate in some way to the zeta function of the sur-
face. As far as I can tell, that does not happen, and I have not thought further
in this direction. The reader who wants to work on diophantine questions re-
garding zero-cycles and Chow groups should consult Colliot-Thélène (1995),
Esnault (2003), and the references given in these papers.

Lectures 8 and 9: Regulators and values of L-functions

The whole subject of motivic cohomology, regulators, and values of L-functions
remains to a large extent conjectural, but we now understand much better what
should be true (Rapoport et al. 1988; Soulé 1986; Bloch and Kato 1990). For
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constructions of the regulator, the reader can consult Goncharov (2005) and
Bloch (1986b). Concerning the basic conjecture, I am especially attracted to
the formulation given by Fontaine and Perrin-Riou (Fontaine 1992; Fontaine
and Perrin-Riou 1994). To understand their idea, let X be a smooth, projective
variety of dimension d over Q. (In what follows I gloss over many intractable
conjectures.) Consider a motive M = hp(X)(q), where hp(X) is a Chow motive
as in (0.11), and write M∗(1) := h2d−p(X)(d − q + 1). Write MB = Hp

B(X,Q(q))
for the Betti cohomology of X(C). Let M+B ⊂ MB be the subspace invariant
under the action of conjugation. Let tM := Hp

DR(X,Q(q))/F0, where H∗DR is
de Rham cohomology. There is a natural map α : M+B ⊗ R → tM ⊗ R, and
(assuming certain conjectures) Fontaine and Perrin-Riou construct an exact
sequence of motivic cohomology

0→ HomDM(Q(0),M) ⊗ R→ Kerα→ (Ext1DM, f (Q(0),M∗(1)) ⊗ R)∗

→ Ext1DM, f (Q(0),M) ⊗ R→ Cokerα→ (HomDM(Q,M∗(1)) ⊗ R)∗ → 0.

(0.15)

Here Hom and Ext are taken in the triangulated category of Voevodsky mo-
tives over Q. The subscript f refers to behavior at finite primes. As a con-
sequence of (0.15) one gets a trivialization over R of the tensor product of
determinant lines

(0.16) det(R HomDM, f (Q(0),M))R

⊗ det(R HomDM, f (Q(0),M∗(1)))R ⊗ det(α)−1 � R.

The various determinants have Q-structures (though α, itself, does not), so
one may examine in (0.16) the ratio of the real trivialization and the rational
structure. In fact, using Galois and �-adic cohomology, the authors actually
get a Z-structure on the left. They show that the integral conjecture in Bloch
and Kato (1990) is equivalent to this ratio being given by L∗(M, 0), the first
non-vanishing term in the Taylor expansion of L(M, s) where L(M, s) is the
Hasse–Weil L-function associated to M.

Well, okay, there is a lot here we do not understand, but my thought is that
one might redo (0.15) working directly with the cycle complexesZq(X, •)[−2q]
and Zd+1−q(X, •)[−2(d + 1 − q)] which one should think of as concrete real-
izations of motivic cohomology RΓM(X,Z(q)) and RΓM(X,Z(d + 1 − q)). The
resulting determinant metrics could perhaps be deduced (or at least interpreted)
directly from the intersection–projection map (well defined in the derived cat-
egory)

Zq(X, •)[−2q]
L⊗ Zd+1−q(X, •)[−2(d + 1 − q)] → Z1(Spec Q, •)[−2d].
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Hanamura suggested this approach to understanding heights and biexten-
sions. Of course, as it stands it is purely algebraic. It will be necessary to
take the cone over the regulator map in some fashion. The result should be
some kind of metric or related structure on the determinant of the cycle com-
plex. This would fit well with a conjecture of Soulé (1984), which says in this
context that for X regular and proper of dimension d over Spec Z, the Euler
characteristic ofZp(X, •)[−2p] should be defined and we should have

χ(Zp(X, •)[−2p]) =
∑

(−1)idimQHi
M(X,Q(p)) = −ords=d−pζX(s),

the negative of the order of zero or pole at s = d − p of the zeta function of X.

Coda: Motives in physics

The subjects of algebraic cycles and motives have enjoyed a tremendous the-
oretical development over the past 30 years. At the risk of scandalizing the
reader, I would say it is high time we start looking for applications.

Dirk Kreimer has been teaching me about Feynman amplitudes and pertur-
bative calculations in quantum field theory. These are periods that arise, for
example, in computations of scattering amplitudes. They have a strong ten-
dency to be multi-zeta numbers (Bloch et al. 2006; Broadhurst and Kreimer
1997; but cf. Belkale and Brosnan 2003). The periods in question are associ-
ated to graphs. Essentially, the Kirchhoff polynomial (Bloch et al. 2006) of a
graph Γ defines a hypersurface XΓ in projective space, and the Feynman am-
plitude is a period of this hypersurface relative to a reference symplex. If in-
deed these are multi-zeta numbers it should be the case that the cohomology
of XΓ has a big Tate piece. One knows if XΓ were smooth, then Hn

Betti(XΓ,Q)
would have pure weight n, so any Tate class, i.e. any map of Hodge structures
Z(−p) → Hn

Betti(XΓ,Q) would necessarily be a Hodge class, i.e. n = 2p. The
Hodge conjecture would say that such a class comes from an algebraic cycle,
i.e. a class in H2p

M (XΓ,Z(p)) via the realization map from motivic cohomology
to Betti cohomology. Unfortunately (or perhaps fortunately), the XΓ are highly
singular, so all one can say are that the weights of Hn are ≤ n. There are all
kinds of possibilities for interesting cohomology classes coming via realiza-
tion from motivic cohomology. For example, the “wheel with n spokes graph”
WS (n) gives rise to a hypersurface XWS (n) of dimension 2n − 2. The primi-
tive cohomology in the middle dimension for this graph is computed (Bloch
et al. 2006) to be Q(−2) (independent of n). An appropriate generalization of
the Hodge conjecture would suggest a class in H2n−2

M (XWS (n),Q(2)). The prob-
lem of computing such motivic cohomology groups can be attacked via the

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-11842-2 - Lectures on Algebraic Cycles, Second Edition
Spencer Bloch
Frontmatter
More information

http://www.cambridge.org/9780521118422
http://www.cambridge.org
http://www.cambridge.org


Preface to the second edition xxi

combinatorics of the graph, but what has so far proved more powerful is to
use classical algebro-geometric techniques to study the geometry of rank strat-
ifications associated to a homomorphism of vector bundles u : E → F over
projective space.

Ideally, knowledge of motives should provide a strong organizing force to
study complex physical phenomena. Even simple motivic invariants like weight
and Hodge level should help physicists understand the periods arising in their
computations. More sophisticated methods involving monodromy and limiting
mixed motives may give information about Landau singularities and unitarity
of the S -matrix.
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