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theory, with many important connections to other areas of mathematics and physics.
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exposition of the approach developed by A. M. Vershik and A. Okounkov.
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Preface

Since the pioneering works of Frobenius, Schur and Young more than a hun-
dred years ago, the representation theory of the finite symmetric group has
grown into a huge body of theory, with many important and deep connections
to the representation theory of other groups and algebras as well as with fruit-
ful relations to other areas of mathematics and physics. In this monograph, we
present the representation theory of the symmetric group along the new lines
developed by several authors, in particular by A. M. Vershik, G. I. Olshan-
skii and A. Okounkov. The tools/ingredients of this new approach are either
completely new, or were not fully understood in their whole importance by
previous authors. Such tools/ingredients, that in our book are presented in a
fully detailed and exhaustive exposition, are:

– the algebras of conjugacy-invariant functions, the algebras of bi-K-
invariant functions, the Gelfand pairs and their spherical functions;

– the Gelfand–Tsetlin algebras and their corresponding bases;
– the branching diagrams, the associated posets and the content of a tableau;
– the Young–Jucys–Murphy elements and their spectral analysis;
– the characters of the symmetric group viewed as spherical functions.

The first chapter is an introduction to the representation theory of finite
groups. The second chapter contains a detailed discussion of the algebras
of conjugacy-invariant functions and their relations with Gelfand pairs and
Gelfand–Tsetlin bases. In the third chapter, which constitutes the core of the
whole book, we present an exposition of the Okounkov–Vershik approach
to the representation theory of the symmetric group. We closely follow the
original sources. However, we enlighten the presentation by establishing a
connection between the algebras of conjugacy-invariant functions and Gelfand
pairs, and by deducing the Young rule from the analysis of a suitable poset.

xiii
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xiv Preface

We also derive, in an original way, the Pieri rule. In the fourth chapter we
present the theory of symmetric functions focusing on their relations with
the representation theory of the symmetric group. We have added some
nonstandard material, closely related to the subject. In particular, we present
two proofs of the Jucys–Murphy theorem which characterizes the center
of the group algebra of the symmetric group as the algebra of symmetric
polynomials in the Jucys–Murphy elements. The first proof is the original one
given by Murphy, while the second one, due to A. Garsia, also provides an
explicit expression for the characters of Sn as symmetric polynomials in the
Jucys–Murphy elements. In the fifth chapter we give some recent formulas
by Lassalle and Corteel–Goupil–Schaeffer. In these formulas, the characters
of the symmetric group, viewed as spherical functions, are expressed as
symmetric functions on the content of the tableaux, or, alternatively, as shifted
symmetric functions (a concept introduced by Olshanskii and Okounkov) on
the partitions. Chapter 6 is entirely dedicated to the Littlewood–Richardson
rule and is based on G. D. James’ approach. The combinatorial theory
developed by James is extremely powerful and, besides giving a proof of the
Littlewood–Richardson rule, provides explicit orthogonal decompositions of
the Young modules. We show that the decompositions obtained in Chapter 3
(via the Gelfand–Tsetlin bases) are particular cases of those obtained with
James’ method and, following Sternberg, we interpret such decompositions
in terms of Radon transforms (P. Diaconis also alluded to this idea in his
book [26]). Moreover, we introduce the Specht modules and the generalized
Specht modules. It is important to point out that this part is closely related to
the theory developed in Chapter 3 starting from the branching rule and the
elementary notions on Young modules (in fact these notions and the related
results suffice). The seventh chapter is an introduction to finite dimensional
algebras and their representation theory. In order to avoid technicalities and
to get as fast as possible to the fundamental results, we limit ourselves
to the operator ∗-algebras on a finite dimensional Hilbert space. We have
included a detailed account on reciprocity laws based on recent ideas of R.
Howe and their exposition in the book by Goodman–Wallach, and a related
abstract construction that naturally leads to the notion of partition algebra. In
Chapter 8 we present an exposition of the Schur–Weyl duality emphasizing
the connections with the results from Chapters 3 and 4. We do not go
deeply into the representation theory of the general linear group GL(n, R),
because it requires tools like Lie algebras, but we include an elementary
account on partition algebras, mainly based on a recent expository paper of
T. Halverson and A. Ram.
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Preface xv

The style of our book is the following. We explicitly want to remain at an
elementary level, without introducing the notions in their wider generality and
avoiding too many technicalities. On the other hand, the book is absolutely
self-contained (apart from the elementary notions of linear algebra and group
theory, including group actions) and the proofs are presented in full details.
Our goal is to introduce the (possibly inexperienced) reader to an active area
of research, with a text that is, therefore, far from being a simple compilation
of papers and other books. Indeed, in several places, our treatment is original,
even for a few elementary facts. Just to draw a comparison against two other
books, the theory of Okounkov and Vershik is treated in a complete way in the
first chapter of Kleshchev’s book, but this monograph is at an extremely more
advanced level than ours. Also, the theory of symmetric functions is masterly
and remarkably treated in the classical book by Macdonald; in comparison with
this book, by which we were inspired at several stages, our treatment is slightly
more elementary and less algebraic. However, we present many recent results
not included in Macdonald’s book.

We express our deep gratitude to Alexei Borodin, Adriano Garsia, Andrei
Okounkov, Grigori Olshanski, and especially to Arun Ram and Anatoly Ver-
shik, for their interest in our work, useful comments and continuous encour-
agement.

We also thank Roger Astley, Clare Dennison and Charlotte Broom from
Cambridge University Press and Jon Billam for their constant and kindest help
at all stages of the editing process.

Roma, 21 May 2009 TCS, FS and FT
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