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Introduction

In this chapter we provide an intuitive introduction to the topic of approx-
imability and parallel computation. The method of approximation is one of
the well established ways of coping with computationally hard optimization
problems. Many important problems are known to be NP-hard, therefore
assuming the plausible hypothesis that P#NP, it would be impossible to
obtain polynomial time algorithms to solve these problems.

In Chapter 2, we will give a formal definition of optimization problem,
and a formal introduction to the topics of PRAM computation and approx-
imability. For the purpose of this chapter, in an optimization problem the
goal is to find a solution that maximizes or minimizes an objective function
subjected to some constrains. Let us recall that in general to study the NP-
completeness of an optimization problem, we consider its decision version.
The decision version of many optimization problems is NP-complete, while
the optimization version is NP-hard (see for example the book by Garey
and Johnson [GJ79]). To refresh the above concepts, let us consider the
Maximum Cut problem (MAXCUT).

Given a graph G with a set V of n vertices and a set E of edges, the
MAXCUT problem asks for a partition of V' into two disjoint sets V; and V;
that maximizes the number of edges crossing between V; and V5. From now
on through all the manuscript, all graphs have a finite number of vertices
n. The foregoing statement of the MAXCUT problem is the optimization
version and it is known to be NP-hard [GJ79]. The decision version of
MAXCUT has as instance a graph G = (V, E) and a bound k € Z*, and
the problem is to find the partition V; and V4 such that the number of edges
crossing the two sets of vertices is greater than or equal to k. The decision
version of MAXCUT is NP-complete [GJS76]. The MAXCUT is a problem
of great practical importance in the design of interconnexion networks and
in statistical physics (see for example [BGJR88]).
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2 1 Introduction

Decision problems are easy to encode as languages over a finite alphabet,
where for each problem the language is the set of instances having answer
yes. Given an instance of a decision problem, to test if it has a solution is
equivalent to deciding if the instance belongs to the language. The theory of
NP-completeness was developed at the beginning of the 70s, in terms of deci-
sion problems ([Coo71], [Lev73], [Kar72]). The idea of approximate difficult
problems is previous to the development of the theory of NP-completeness
[Gra66]. Johnson in a seminal paper [Joh74] did a systematic treatment to
approximate in polynomial time the solution to many of the optimization
versions in the original list of NP-complete problems, given by Karp [Kar72].
Since then, the topic has become a standard part in courses on algorithms
(see for example [CLR89]). Intuitively, for 0 < € < 1, an e-approximation
is an algorithm that outputs a value s, such that the optimal solution lies
in the interval [se, s/€].

Concurrently with this development of approximability to hard problems,
in order to gain speed and computer power, research in parallel architectures
was flourishing. As a consequence, a lot of work was taking place develop-
ing the foundations of massive parallel computation and parallel algorithm
design. The most popular theoretical model of parallel computation that
has been used is the Parallel Random Access Machine (PRAM), in-
troduced by Fortune and Wyllie [FW78] and by Goldschlager [Gol78]. A
PRAM consists of a number of sequential RAM processors, each with its
own memory, working synchronously and communicating among themselves
through a common shared memory. In one step, each processor can access
one memory location (for reading or writting on it), or execute a single RAM
operation. Although performing the same instructions, the processors can
act on different data.

The simplicity of the PRAM model has led to its acceptance as the model
used to identify the structural characteristics that allow us to exploit paral-
lelism for solving the problem. However, it should be noted that the PRAM
model hides levels of algorithmic and programming complexity concerning
reliability, synchronization, data locality and message passing. Nevertheless,
as we shall mention in Section 1.3, several techniques have been developed
to simulate PRAM algorithms by more realistic models of parallel compu-
tation.

1.1 Sequential and Parallel Computation

The sequential model we use is the RAM machine, in which we measure time
by number of steps and space by number of memory locations. As usual
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1.1 Sequential and Parallel Computation 3

by an efficient sequential algorithm we mean one that takes polynomial
time using a RAM machine. The set of problems that can be solved by such
algorithms constitute the class P. To familiarize the reader with the notation
we use to describe algorithms, let us give a program for the Prefix-Sums
problem. The input to the Prefix-Sums problem is a sequence (z1,... ,Zx),
and the output is a sequence (si,...,S,) where for each 1 < i < n, s5; =

;.=1 z;. In Algorithm 1 we give the sequential code for the Prefix-Sums
operation.

PRESUMS (z[1 : n})
1 s[1] :=z[1};
2 fori=2tondo
3 s[i} := s[t — 1] + =[]

Algorithm 1: Sequential Prefix-Sums

The use of a parallel machine changes the parameters to measure effi-
ciency. In sequential RAM models, the usual measure is time, and to a
lesser extent space. In the parallel setting we have to measure the use of
two resources, number of parallel steps (parallel time) and the maximum
number of processors needed in any parallel step. By an efficient parallel
algorithm we mean one that takes polylogarithmic time using a polynomial
number of processors, and can be implemented on a PRAM machine. Prob-
lems that can be solved within these constraints are said to belong to the
class NC. Thus problems in class NC are regarded as being solved in par-
allel, using a polylogarithmic number of parallel steps and using a number
of processors that at most is polynomial, both measure functions in the size
of the input to the problem. Through all this book, given a problem, we
shall refer to an NC algorithm as a parallel algorithm for the problem that
can be implemented with a PRAM using a polylogarithmic number of steps
and a polynomial number of processors. The same abuse of nomenclature
will be used with other parallel complexity classes, like RNC and ZNC.

We write parallel algorithms in an informal pseudolanguage. The descrip-
tion of an algorithm is given in sequences of macroinstructions. The main
difference from sequential algorithms is the use of a new instruction for
all (condition) pardo; all statements following this sentence are executed
in parallel for all processors whose identifier satisfies the condition. Algo-
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4 1 Introduction

rithm 2 solves the Prefix-Sums problem in a PRAM, for sake of simplicity
we have assumed that the input data is indexed from 0 to n — 1.

PPRESUMS (z[0: n — 1)
1 for d=1 to logn do
2 for all i mod 24! = 0 and 0 < ¢ < n pardo
3 z[i + 24 = 1) i=zfi + 29 — 1] + i + 2471 — 1]

Algorithm 2: Parallel Prefix-Sums

In general we will use the product time x processors to derive bounds that
allow us to compare the performance of sequential and parallel algorithms.
Notice that a parallel step involving n processors can be performed by a
single processor in time n. The above algorithm takes time O(logn) and
uses O(n) processors. Thus if we use a sequential machine to simulate the
algorithm the simulation will take time O(nlogn); therefore the parallel
algorithm is not optimal.

An optimal parallel algorithm will be one such that the product x pro-
cessors is equal to the optimal (best bound) sequential complexity. It is
relatively easy to derive an optimal implementation of the above algorithm
(see for example [JaJ92], [Rei93]), although we will not give it here. The
Prefix-Sums operation has been analyzed for centuries as the recurrence
z; = a1 + z;—1. The first parallel circuit was suggested by Ofman [Ofm63].

1.2 Some Problems to Approximate

Let us begin with an easy example of a problem that can be approximated
in parallel. The Maximum Satisfiability problem consists in, given a boolean
formula F' in conjunctive normal form, finding a truth assignment that sat-
isfies the maximum number of clauses simultaneosuly. It is easy to derive
an approximation algorithm for the Maximum Satisfiability problem. Note
that the assignment z; = 1 (for 1 < i < n) satisfies all clauses with a positive
literal and the assignment z; = 0 (for 1 < i < n) satisfies all the clauses with
a negative literal. Therefore, given a boolean formula F with m clauses and
with variables z1, ..., z,, taking from the two previous assignments the one
satisfying most clauses, such an assignment satisfies at least m/2 clauses,
and since there are m clauses, it is at least “half as good” as an optimal
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1.2 Some Problems to Approzimate 5

assignment. Also it is easy to see that with a polynomial number of proces-
sors it can be checked in logarithmic time whether an assignment satisfies
at least one half of the clauses, and therefore this provides a trivial paral-
lel algorithm for approximating Maximum Satisfiability within a constant
factor of the optimal solution.

Let us move to a more involved example, the Maximum Cut problem. In
the following, we shall prove that there is a PRAM algorithm to approximate
MAXCUT within a constant factor of the optimal solution. The proof uses
the technique of derandomization. Our presentation is based on the paper
by Luby [Lub86].

To clarify the proof, let us consider the 0-1 Labeling problem. Given a
graph G = (V| E), with n nodes, a labeling is an assignment of labels from
the set {0, 1} to the nodes of G. For a labeling ! : V' — {0, 1} define the cost
of the labeling | by X (1) = Z{u’v}eE l{(u) —(v)]. The 0-1 Labeling problem
consists in finding the labeling that maximizes the cost. Thus taking as
partition the set of vertices with the same label the labeling problem is
equivalent to the MAXCUT problem.

Notice that for a graph with n vertices, there are 2" possible labelings of
it. A naive aproach to solving the problem is a search in the whole space of
labelings, as is done in Algorithm 3. Notice that we can represent a labeling
by a binary string z taking values from 0" to 1™. The variable ¢ computes
the maximum cost of all labelings, so at the end the value of ¢ will be the
maximal cost, and the variable [ will hold a labeling with maximal cost.

MAXCUT (G)
n:= V| c:=0;1:=2%
fort=0to 2" —-1do
d:=0;
for i=1 to n do
for j =i+ 1tondo
if (i,5) € E and z; # z;
then d:=d + 1;
if d > ¢ then
ci=d;l:=z

© 00 3 S O W=

Algorithm 3: Solving MAXCUT by exhaustive search
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6 1 Introduction

Although Algorithm 3 takes exponential time, we can investigate further
properties of the cost function. Given G, let €2 denote the set of all 27
possible labelings. We can see the set (! as a probability space, in which
each labeling is a sample point, to be taken with probability 1/|Q?|, and the
function X is interpreted as a random variable on €. Therefore one can ask
about the average cost of a labeling. The expected value of X, denoted by
p[X], is defined as

pX] =Y X(1)Pr{l}.

leQ

To find a bound for the expectation, let us consider an alternative scheme.
For each node u € V define an indicator random variable [,, that takes values
0 and 1 with probability 1/2. Consider n independent random variables, one
for each node u € V. Notice that the joint distribution of the n independent
random variables is the uniform distribution on the set 2. Therefore we can
express the expectation through labelings or through the outcome of the n
random variables. The main difference is that now we have only to analyze
the contribution of each edge to the final cost. A given edge contributes 0
when both labels are the same, but when they differ the contribution is 1.
Therefore we can express the expectation as

plX] = Z (1Pr{ly =1y} + 0Pr{ly # lLu}). (1.1)

e=(u,v)EE

Recall that 1, is selected from {0, 1}, with probability 1/2, and as the random
variables are independent, we get

Pr{l, =1l,} =Pr{ly=1and [, = 1} + Pr{l, = 0 and [, = 0}
1 1 1

17177
and also we obtain the same value for the probability of being different.
Thus, substituting in (1.1) we conclude that

pxl= %=%L

e=(u,v)€E

This probabilistic result says that if an element of §2 is generated at random,
then with high probability (greater than or equal to 1/2) we will have an
element for which the cost function is greater than or equal to the expected
value. In Algorithm 4 we present a simple schema that with high probability
computes a labeling with a cost above the average.

This algorithm can be easily parallelized, just replace the sequential for
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1.2 Some Problems to Approzimate 7
RCUT (G)
1 n:=|V|;
2 fori=1tondo
3 toss a fair coin to assign a value 0 or 1 to [[4]

Algorithm 4: Computing with high probability a cut at least average

PRCUT (G)
1 n:=|V]
2 for alll1 <i<n pardo
3 toss a fair coin to assign a value 0 or 1 to [[i]

Algorithm 5: Computing with high probability a cut at least average in
parallel

by a forall sentence, as is done in Algorithm 5. Thus we have a random-
ized parallel algorithm that in constant time, using n processors, with high
probability produces a labeling with cost at least the average cost. It is
not difficult to do a better analysis. The average cost is |E|/2 and the
maximum cost is bounded above by the total number |[E| of edges in the
graph. Thus if we could compute a value ¢’ such that |E|/2 < ¢ < |E]
then we are sure that the optimum cost is in the interval [¢/, 2 ¢/]. Therefore,
cdis a %—approximation to the optimal cut. Thus algorithms RCUT and
PRCUT are randomized algorithms that with high probability produce a
%-approximation to the optimal cut.

However, we want a deterministic algorithm; to get it, we use a gen-
eral technique used to derandomize some algorithms. Nice introductions to
derandomization techniques are given in Chapter 15 of the book of Alon,
Spencer and Erdos [ASE92] and the Ph. Dissertation of Berger [Ber90]. The
key observation is that in the expectation analysis we only make use of the
fact that the labels of two elements are independent, and we did not need
the independence of a larger set of labels. Therefore to have a probability
space in which the analysis of the expectation is the same as before, we
need a labeling space in which two properties hold: the first one, that the
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8 1 Introduction

probability of a node getting label 0 (1) is 1/2; the second one, that the la-
bels of any two elements must be independent. This last property is usually
called pairwise independence. The interesting point in this approach is
that while a probability space with full independence has exponential size,
it is possible to construct a probability space of polynomial size, with only
pairwise independence. Clearly, if a random variable over the small space
takes a value with positive probability, then some element of the space must
be bigger than or equal to this value. Therefore by exhaustive search the
small space can be used to derive a non-random algorithm.

In our case, the main idea to get the polynomial space of labeling is to
start with a set of polynomial size, in which an element can be described
with few bits, and then use some kind of hash function to determine the
corresponding labeling. The notion of hash function or hash table appears
when we want to address a small number of elements, stored in a huge
array. Here the small set represents the set of keys, assigned to labelings.
Furthermore, consider hash funcions as random variables, over the set of
keys, K, with uniform distribution.

To be precise, take the set of keys K as the set of pairs (a,b) with 1 <
a,b < n, so K has n? points. Define the labeling associated to key (a,b) in
the following way:

Ly o(v) = 0 ifa+bviseven,
@b\ =1 1 otherwise.

Fix a vertex v € V; considering all possible elements in K, the corresponding
labeling assigns label 1 to v in one half of the cases, and 0 in the other half.
But that means that in the space of labelings addressed through K the
probability that v gets label 0 (1) is 1/2. Therefore the first requirement if
fulfilled.

Now fix two vertices u and v, and consider all elements in K x K. For a
given tuple (a, b, c,d) € K x K the corresponding labelings assign the same
label to both vertices when = a +bu+ c+ dv is even, and different labels
when z is odd. A straightforward computation gives that for half of the
elements in K x K the corresponding z value will be even and for the other
half it will be odd, therefore the probability that two labelings agree (or
disagree) on two nodes is 1/2. Thus the analysis of x[X] can be done, in the
space of labelings obtained through K, and the new expected value is still
bounded by |E|.

This property guarantees that if we search through all points in the small
space and take the one with maximum cost, we get a labeling that has
cost bigger than or equal to the average cost. Therefore, performing an
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1.3 Realistic Models 9

exahustive search, we can obtain a %-approximation to the problem. The
foregoing argument implies that Algorithm 6 computes an approximation
to the MAXCUT on a given graph G = (V, E)). The labeling corresponding
to the final values of al,bl is a %-approximation to the MAXCUT on G.
Moreover, the complexity of the algorithm is O(1) parallel steps and it uses
O(n*) processors.

MAXCUT (G)
n:=|V]; ¢c:=0; al := 0; bl := 0;
for all 1 < a,b < n pardo
for all 1 <4,j < n pardo
if (4,j) € Eand a+bi+a+bjis odd
then [[{(a,b), (3,5)] := 1;
PPRESUMS(([(a, b)]);
for d =1 to 2logn do
for all i mod 2¢*! and 0 < i < n pardo
i + 2441 —1,2n] :=
max([i + 24 — 1,2n], I[i + 241 — 1, 2n));
10 c¢:=1[2n,2n]/2

O 00~ O Ut W =

Algorithm 6: Approximating MAXCUT in parallel.

Algorithm 6 illustrates one of the canonical techniques to obtain approx-
imations with NC algorithms. In the following chapters, we will describe
different techniques to approximate in parallel difficult problems. We will
define different parallel approximation complexity classes, and study the
consequences of a problem being in one of those classes, as well as the rela-
tionship among the classes.

1.3 Realistic Models

An important matter for the reader could be the use of the PRAM machine
as our model of parallel computation.. At the beginning of the chapter, we
already indicated that the PRAM model provides a robust framework for
the development and analysis of parallel algorithms, as it is a formal model
to measure the amount of inherent parallelism in a given problem. Quite a
bit of work has been done in studying whether a PRAM algorithm can be ef-
ficiently implemented on a “realistic” parallel machine, by realistic meaning
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10 1 Introduction

4k-1 3k 2k k 0

................................... id(u)

Fig. 1.1: Interpretation of the identifier of a node

a machine that takes into account factors such as the data locality, the syn-
chronization or the cost of message passing. This last issue is one of the most
relevant points in the simulation, and basically depends on the bisection
width or bandwidth of the underlying topology connecting the processors
in the realistic machine. The bandwidth is the maximum number of mes-
sages per instruction that can pass between one half of the processors and
the other half. In general, while the PRAM model has unlimited bandwidth,
most of the real machines have limited bandwidth, the exception being the
hypercube (see for example the book of Leighton for a deep study of syn-
chronous networks of processors [Lei93]). It should be noticed that there are
efforts towards building machines with very high bandwidth, like the TERA
machine [ACC90] and the PRAM being built at Saarbriicken [ADK193].

In general a PRAM algorithm could be implemented on a distributed
memory machine with not too much loss of efficiency, depending on the
number of processors used and the size of the data. Most of the simulations
will take a polylogarithmic cost in the number of parallel steps (see for
example the survey papers by McColl [McC93] and Ranade [Ran96}).

Let us show how to implement the algorithm described for the Maximum
Cut problem, on a real machine, the hypercube. A g-dimensional hyper-
cube is formed by 27 synchronous processors, each processor with a different
identifier of g bits, a processor is connected to all processors at Hamming
distance one. Processors may have the computing capacity we wish; from
being workstations to processors with a few bits of memory.

Assume that n = 2% for some k, and consider a 4k-dimensional hypercube,
notice that now each node has an identifier formed by 4k bits. This identifier
id(u) will be divided into 4 numbers of k bits each (see Figure 1.1). The
first 2k bits correspond to the pair a,b of numbers used to define the hash
function, and the other 2k bits to nodes %, j that represent a possible edge
in the graph. For a given node u we will represent the bits of its identifier
by u4k—1,--. ,up and the corresponding pieces by iy, ju, Gy, by.
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