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Foreword

July 1997 saw the start of a six month international research programme
entitled Neural Networks and Machine Learning, hosted by the Isaac Newton
Institute for Mathematical Sciences in Cambridge. During the programme
many of the world’s leading researchers in the field visited the Institute for
periods ranging from a few weeks up to six months, and numerous younger
scientists also benefited from a wide range of conferences and tutorials.

Amongst the many successful workshops which ran during the six month
Newton Institute programme, the one week workshop on the theme of On-
line Learning in Neural Networks, organized by David Saad, was particularly
notable. He succeeded in assembling an impressive list of speakers whose talks
spanned essentially all of the major research issues in on-line learning. The
workshop took place from 17 to 21 November, with the Newton Institute’s
purpose-designed building providing a superb setting.

This book resulted directly from the workshop, and comprises invited chap-
ters written by each of the workshop speakers. It represents the first book
to focus exclusively on the important topic of on-line learning in neural net-
works. On-line algorithms, in which training patterns are treated sequentially,
and model parameters are updated after each presentation, have tradition-
ally played a central role in many neural network models. Indeed, on-line
gradient descent formed the basis of the first effective technique for training
multi-layered networks through error back-progagation. It remains of great
practical significance for training large networks using data sets comprising
several million examples, such as those routinely used for optical character
recognition.

During the early years of the development of back-propagation, many
heuristics were proposed to improve its performance, particularly in terms
of its convergence speed. Often these were lacking in theoretical foundation
and so their generality and applicability were not always clear. More recently
there have been many complementary attempts to provide a theoretical anal-
ysis of on-line learning, leading to a deeper understanding of the algorithms,
and to the proposal of more theoretically motivated variants. Such analyses
have come from a variety of complementary viewpoints, most of which are
represented in the chapters of this book.

In drawing this material together, this book will prove invaluable both to
researchers interested in on-line learning techniques, and to students wishing
to broaden their knowledge of neural networks and machine learning.

Christopher M. Bishop
August 1998
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Introduction

David Saad

Neural Computing Research Group, Aston University
Birmingham B4 7ET, UK.
saadd@aston.ac.uk

Artificial neural networks (ANN) is a field of research aimed at using com-
plex systems, made of simple identical non-linear parallel elements, for per-
forming different types of tasks; for review see (Hertz et al 1990),(Bishop
1995) and (Ripley 1996). During the years neural networks have been suc-
cessfully applied to perform regression, classification, control and prediction
tasks in a variety of scenarios and architectures. The most popular and use-
ful of ANN architectures is that of layered feed-forward neural networks, in
which the non-linear elements (neurons) are arranged in successive layers, and
the information flows unidirectionally; this is in contrast to the other main
generic architecture of recurrent networks where feed-back connections are
also permitted. Layered networks with an arbitrary number of hidden units
have been shown to be universal approximators (Cybenko 1989; Hornik et
al 1989) for continuous maps and can therefore be used to implement any
function defined in these terms.

Learning in layered neural networks refers to the modification of internal
network parameters, so as to bring the map implemented by the network as
close as possible to a desired map. Learning may be viewed as an optimization
of the parameter set with respect to a set of training examples instancing the
underlying rule. Two main training paradigms have emerged: batch learning,
in which optimization is carried out with respect to the entire training set
simultaneously, and on-line learning, where network parameters are updated
after the presentation of each training example (which may be sampled with
or without repetition). Although batch learning is probably faster for small
and medium training sets and networks, it seems to be more prone to local
minima and is very inefficient in the case of training large networks and
for large training sets. On-line learning is also the more natural approach
for learning non-stationary tasks, whereas batch learning would require re-
training on continuously changing data sets.

On-line learning of continuous functions, mostly via gradient based meth-
ods on a differentiable error measure is one of the most powerful and com-
monly used approaches to training large layered networks in general, e.g.,
(LeCun et al 1989), and for nonstationary tasks in particular; it is also ar-
guably the most efficient technique in these cases. However, on-line training
suffers from several drawbacks:
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4 Saad

e The main difficulty with on-line training is the sensitivity of most train-
ing methods to the choice of training parameters. This dependence may
not only slow down training, but may also have bearing on its ability
to converge successfully to a desired stable fixed point.

e Most advanced optimization methods (e.g., conjugate gradient, variable
metric, simulated annealing etc) rely on a fixed error surface whereas
on-line learning produces an inherently stochastic error surface.

e The Bayesian approach provides an efficient way of training and has
been applied quite naturally and successfully within the framework of
batch learning. Extensions to the on-line case, where explicit informa-
tion on past examples is not stored, have been limited so far.

These shortcomings of current on-line training methods and the quest for
more insight into the training process itself motivate the analytical study of
these methods presented in this book. This collection is based on presentations
given during the workshop on ‘On-line learning in neural networks’ as part
of the Newton Institute program on Neural Networks and Machine Learning
in November 1997.

The second chapter of the book opens with a thorough overview of tradi-
tional on-line training methods starting from the early days of neural networks
These include Rosenblatt’s perceptron, Widrow’s Adaline, the K-means algo-
rithm, LVQ2, quasi-Newton methods, Kalman algoritms and more. A unified
framework encompasing most of these methods which can be analyzed us-
ing the tools of stochastic approximation, is presented and utilized to obtain
convergence criteria under rather weak conditions.

Chapter 3 provides a different point of view for describing the parameter
training dynamics based on the master equation, which monitors the evo-
lution of their probability distribution. This chapter examines two different
scenarios: In the first case, one derives exact dynamical equations for a gen-
eral architecture when the learning rule is based on using only the sign of the
error gradient. The analysis is carried out by monitoring the evolution of all
surviving moments of the parameter probability distribution, providing an
exact solution of the moments evolution. In the second case, one employs a
perturbation approach based on monitoring the evolution of leading moments
of the parameter probability distribution in the asymptotic regime. This is
carried out for both constant and decaying learning rate and enables one
to obtain the typical generalization error decay and convergence criteria for
different polynomial annealing schedules which become exact asymptotically.

A statistical based description of on-line training techniques, with empha-
sis on more advanced training methods, is presented in chapter 4. A rigorous
comparison between the asymptotic performance of batch and on-line training
methods is carried out for both variable and fixed learning rates, showing that
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on-line learning is as effective as batch learning asymptotically. The chapter
also introduces a practical modification of an established method (Barkai et al
1996) for learning rate adaptation and its analysis. The new method is based
on gradient flow information and can be applied to learning continuous func-
tions and distributions even in the absence of an explicit loss function. The
method is first analyzed and then successfully applied in the subsequent chap-
ter to handle the real-world problems of blind source separation and learning
in non-stationary environments, demonstrating the method’s potential.

One of the main difficulties with using on-line learning methods for practi-
cal applications is sensitivity to the choice of training parameters such as teh
learning rate. These parameters often have to be varied continuously to en-
sure optimal performance. Chapter 6 offers a practical method for varying the
parameters continuously and automatically and examines the performance of
the suggested algorithm on some benchmark problems.

Statistical mechanics offers an alternative description of on-line learning
which enables us to examine all stages of the training process. This descrip-
tion, which may formally be derived from the master equation description of
the stochastic training process (Mace and Coolen 1998), is based on monitor-
ing the evolution of a set of macroscopic variables, sometimes termed order
parameters, which are sufficient to capture the main features of the training
process. This framework usually relies on a teacher-student scenario, where
the model (student) parameters are modified in response to examples gener-
ated by the underlying rule (teacher) simulated by a parallel network which
generates the training examples. The first in a series of chapters which make
use of statistical mechanics techniques focuses on the analytical derivation of
globally optimal learning parameters and learning rules for two layer architec-
tures, known as soft committee machines (Biehl and Schwarze 1995; Saad and
Solla 1995), these are two layer networks with unit hidden to output weights.
Variational methods are applied to the order parameter dynamics in order to
determine optimal learning rate schedules under different learning scenarios.
Locally optimal methods are shown to be inadequate for complicated network
architectures.

Similar techniques are employed in chapter 8 for studying the effect of
noise on locally optimal training methods in tree committee machines with
a general number of hidden nodes. This architecture, of two layer networks
of binary elements with no overlapping receptive fields and unit hidden to
output weights, realizes a discrete mapping in contrast to the continuous one
realized by the soft committee machine considered in the previous chapter.
The asymptotic properties of the optimal training rule and the robustness of
the process to multiplicative output noise are studied within the statistical
mechanics framework.

Next, in chapter 9, the statistical mechanics description is employed to ex-
amine the efficacy of several second order training methods aimed at speeding
up training, for instance Newton’s method, matrix momentum (Orr and Leen
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1997) and natural gradient descent (Amari 1998). This study quantifies the
advantage gained by using second order methods in general, and natural gra-
dient descent in particular, in non-asymptotic regimes. A practical cheaper
alternative to the latter, based on insights gained form information geometry,
is presented in the subsequent chapter and analyzed using similar theoreti-
cal tools for various training scenarios, showing a significant improvement in
training times.

Most chapters so far have concentrated on supervised learning. However,
in chapter 11 the statistical mechanics framework is extended to the analy-
sis of unsupervised learning scenarios and their dynamics. More specifically,
this chapter examines the dynamics of on-line methods aimed at extracting
prototypes and principle components from data. The authors consider on-line
competitive learning (Winner Takes All and K-means) and Sanger’s rule for
on-line PCA. A similar set of equations to those used for supervised learning is
constructed once the macroscopic variables have been identified, facillitating
the study of their dependence on the choice of training parameters.

One of the main defficiencies of the current statistical mechanics framework
is that training examples are presumed to be uncorrelated. This restriction
exists in most analyses except in certain specific scenarios and limits con-
siderably the usefulness of the theoretical analysis for practical cases where
correlations typically emerge either due to the limited training data (which
forces sampling with repitition) or due to correlations which exist within the
data naturally.

Chapters 12, 13 and 14 tackle training scenarios where correlations within
the data exist. In chapter 12, the effect of temporal correlations within the
data is handled using the approaches of both stochastic approximation and
statistical mechanics for small and large networks respectively. The small
network analysis concentrates on a small learning rate expansion where the
effect of correlations may be handled straightforwardly. Correlations in the
large networks analysis are handled by assuming the distribution for the lo-
cal fields to be Gaussian, rendering the analysis tractable. Special emphasis
is given to the effect of correlations on plateaus in the evolution of the gener-
alization error, which are often characteristic of on-line learning in complex
non-linear systems.

The main difficulty of training with fixed example sets is the emerging
correlations between parameter updates due to re-sampling, which generally
give rise to non-Gaussian local field distributions. The method presented in
chapter 13 extends the framework of (Saad and Solla 1995) in both linear
and non-linear networks by projecting the evolving macroscopic parameters
onto the most significant eigenspaces, obtaining an exact result in the linear
case and an approximation in the general non-linear one. The performance
of on-line methods is then compared to that of off-line methods in the case
of biased and unbiased input distributions and for different types of noise.
A different approach, presented in chapter 14, makes use of the dynamical

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521117913
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-11791-3 - On-Line Learning in Neural Networks
Edited by David Saad

Excerpt

More information

Introduction 7

replica method for closing the equations of motion for a new set of order
parameters. This enables one to monitor the evolving non-Gaussian distribu-
tions explicitly. The new order parameters include the old set, derived from
the infinite training data analysis, as a subset in addition to a new continu-
ous parameter which results from the emerging correlations between updates.
The accuracy of results obtained by the method is demonstrated for simple
training scenarios.

One method of speeding up training in both on-line and batch training
scenarios is by learning with queries, in which case the input distibution is
continuously modified to select the most informative examples. These modifi-
cations will depend on the current mapping realized by the system, and thus
on the current set of parameters, and will improve the network’s performance
considerably. Chapter 15 deals with the estimation of decision boundaries
from stochastic examples with and without queries, investigating the conver-
gence rate in both cases and comparing them to the results obtained in batch
learning. Results are also obtained for the fastest feasible convergence rates
with and without queries.

An important extension of the Bayesian approach to on-line training is
presented in chapter 16, based on approximating the evolving posterior by a
multivariate Gaussian distribution. Updating the parameters of this distribu-
tion is carried out by on-line methods in response to the sequential presenta-
tion of training examples. This elegant and principled approach complements
the Bayesian framework of batch learning and may hold a significant prac-
tical potential. The analysis shows a similar asymptotic behavior to that
obtained by the somewhat less practical variational methods. This approach
is investigated further in chapter 17 where it is employed for studying generic
feed-forward architectures. The approximation used in the case of continu-
ous weights is shown to have a similar computational complexity to that of
Bayesian off-line methods while a different approach, based on a Hebbian
approximation, was found to outperform several other on-line approaches,
especially in the case of binary weights.

This book is aimed at provideing a fairly comprehensive overview on recent
developments in theoretical analysis of online learning methods in neural net-
works. The chapters were designed to contain sufficient detailed material to
enable the non-specialist reader to follow most of it with minimal background
reading.
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Abstract

The convergence of online learning algorithms is analyzed using the
tools of the stochastic approximation theory, and proved under very
weak conditions. A general framework for online learning algorithms is
first presented. This framework encompasses the most common online
learning algorithms in use today, as illustrated by several examples.
The stochastic approximation theory then provides general results de-
scribing the convergence of all these learning algorithms at once.

1 Introduction

Almost all of the early work on Learning Systems focused on online algorithms
(Hebb, 1949; Rosenblatt, 1957; Widrow and Hoff, 1960; Amari, 1967; Koho-
nen, 1982). In these early days, the algorithmic simplicity of online algorithms
was a requirement. This is still the case when it comes to handling large, real-
life training sets (LeCun et al., 1989; Miiller, Gunzinger and Guggenbiihl,
1995).

The early Recursive Adaptive Algorithms were introduced during the same
years (Robbins and Monro, 1951) and very often by the same people (Widrow
and Stearns, 1985). First developed in the engineering world, recursive adap-
tation algorithms have turned into a mathematical discipline, namely Stochas-
tic Approzimations (Kushner and Clark, 1978; Ljung and Séderstrém, 1983;
Benveniste, Metivier and Priouret, 1990).

Although both domains have enjoyed the spotlights of scientific fashion at
different times and for different reasons, they essentially describe the same el-
ementary ideas. Many authors of course have stressed this less-than-fortuitous
similarity between learning algorithms and recursive adaptation algorithms
(Mendel and Fu, 1970; Tsypkin, 1971).

The present work builds upon this similarity. Online learning algorithms
are analyzed using the stochastic approximation tools. Convergence is char-
acterized under very weak conditions: the expected risk must be reasonably
well behaved and the learning rates must decrease appropriately.

9
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10 Léon Bottou

The main discussion describes a general framework for online learning al-
gorithms, presents a number of examples, and analyzes their dynamical prop-
erties. Several comment sections illustrate how these ideas can be generalized
and how they relate to other aspects of learning theory. In other words, the
main discussion gives answers, while the comments raise questions. Casual
readers may skip these comment sections.

2 A Framework for Online Learning Systems

The starting point of a mathematical study of online learning must be a
mathematical statement for our subjective understanding of what a learning
system is. It is difficult to agree on such a statement, because we are learning
systems ourselves and often resent this mathematical reduction of an essential
personal experience.

This contribution borrows the framework introduced by the Russian school
(Tsypkin, 1971; Vapnik, 1982). This formulation can be used for understand-
ing a significant number of online learning algorithms, as demonstrated by
the examples presented in section 3.

2.1 Expected Risk Function

In (Tsypkin, 1971; Tsypkin, 1973), the goal of a learning system consists of
finding the minimum of a function J(w) named the expected risk function.
This function is decomposed as follows:

Jw) & E,Q(z,w) & /Q(z w) dP(z) (2.1)

The minimization variable w is meant to represent the part of the learning
system which must be adapted as a response to observing events z occurring
in the real world. The loss function Q(z,w) measures the performance of
the learning system with parameter w under the circumstances described by
event z. Common mathematical practice suggests to represent both w and z
by elements of adequately chosen spaces W and Z.

The occurrence of the events z is modeled as random independent obser-
vations drawn from an unknown probability distribution dP(z) named the
grand truth distribution. The risk function J(w) is simply the expectation
of the loss function Q(z, w) for a fixed value of the parameter w. This risk
function J(w) is poorly defined because the grand truth distribution dP(z)
is unknown by hypothesis.

Consider for instance a neural network system for optical ZIP code recog-
nition, as described in (LeCun et al., 1989). An observation z is a pair (z, y)
composed of a ZIP code image z and its intended interpretation y. Param-
eters w are the adaptable weights of the neural network. The loss function
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Q(z, w) measures the economical cost (in hard currency units) of delivering
a letter marked with ZIP code z given the answer produced by the network
on image z. This cost is minimal when the network gives the right answer.
Otherwise the loss function measures the higher cost of detecting the error
and re-routing the letter.

Comments

Probabilities are used in this framework for representing the unknown truth
underlying the occurrences of observable events. Using successive observations
zt, the learning system will uncover a part of this truth in the form of param-
eter values w; that hopefully decrease the risk functional J(w:). This use of
probabilities is very different from the Bayesian practice, where a probability
distribution represents the increasing knowledge of the learning system. Both
approaches however can be re-conciliated by defining the parameter space W as
a another space of probability distributions. The analysis then must carefully
handle two different probability distributions with very different meanings.

In this framework, every known fact about the real world should be removed
from distribution dP(2) by properly redefining the observation space Z and of
the loss function @(z,w). Consider for instance that a known fraction of the ZIP
code images are spoiled by the image capture system. An observation z can be
factored as a triple (k, z,y) composed of an envelope =, its intended ZIP code y,
and a binary variable  indicating whether the ZIP code image is spoiled. The
loss function can be redefined as follows:

/ Q(z,w) dP (s, z,y)
[ ([ @G wdp(sizn)) aP@y)

J(w)

The inner integral in this decomposition is a new loss function Q'(z, y, w) which
measures the system performance on redefined observations (z, y). This new loss
function accounts for the known deficiencies of the image capture system. This
factorization technique reveals a new probability distribution dP(z,y) which is
no longer representative of this a priori knowledge.

This technique does not apply to knowledge involving the learning system
itself. When we say for instance that an unknown function is smooth, we mean
that it pays to bias the learning algorithm towards finding smoother functions.
This statement does not describe a property of the grand truth distribution.
Its meaning is attached to a particular learning system. It does not suggests a
redefinition of the problem. It merely suggests a modification of the learning
system, like the introduction of a regularization parameter.

2.2 Gradient Based Learning

The expected risk function (2.1) cannot be minimized directly because the
grand truth distribution is unknown. It is however possible to compute an
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