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1 From Atoms to Solids

Materials exhibit an extremely wide range of properties, which is what makes them so

useful and indispensable to humankind. The extremely wide range of the properties of

materials is surprising, because most of them are made up from a relatively small subset

of the elements in the Periodic Table: about 20 or 30 elements, out of more than 100 total,

are encountered in most common materials. Moreover, most materials contain only very

few of these elements, from one to half a dozen or so. Despite this relative simplicity in

composition, materials exhibit a huge variety of properties over ranges that differ by many

orders of magnitude. It is quite extraordinary that even among materials composed of single

elements, physical properties can differ by many orders of magnitude.

One example is the ability of materials to conduct electricity. What is actually measured

in experiments is the resistivity, that is, the difficulty with which electrical current passes

through a material. Some typical single-element metallic solids (like Ag, Cu, Al) have

room-temperature resistivities of 1–5 µ�·cm, while some metallic alloys (like nichrome)

have resistivities of 102
µ�·cm. All these materials are considered good conductors of

electrical current. Certain single-element solids (like Si and Ge) have room-temperature

resistivities much higher than good conductors, for instance, 2.3 × 1011
µ�·cm for Si, and

they are considered semiconductors. Finally, certain common materials like wood (with

a rather complex structure and chemical composition) or quartz (with a rather simple

structure and composed of two elements, Si and O) have room-temperature resistivities

of 1016–1019
µ�·cm (for wood) to 1025

µ�·cm (for quartz). These solids are considered

insulators. The range of electrical resistivities covers an impressive 25 orders of magnitude.

Even for two materials that are composed of the same element, carbon, their resistivity can

differ by many orders of magnitude: graphitic carbon has resistivity 3.5 × 103
µ�·cm and

is considered a semimetal, while in the diamond form, carbon has a much higher resistivity

of ∼ 1022
µ�·cm, the difference being entirely due to the different crystal structure of the

two forms, as shown in Fig. 1.1.

Another example has to do with the mechanical properties of materials. Solids are

classified as ductile when they yield plastically when stressed, or brittle when they do

not yield easily, but instead break when stressed. A useful measure of this behavior is the

yield stress σY , which is the stress up to which the solid behaves as a linear elastic medium

when stressed, that is, it returns to its original state when the external stress is removed.

Yield stresses in materials, measured in units of MPa, range from 40 in Al, a rather soft

and ductile metal, to 5 × 104 in diamond, the hardest material, a brittle insulator. The yield

stresses of common steels range from 200 to 2000 MPa. Again we see an impressive range

of more than three orders of magnitude in how a material responds to an external agent, in

this case a mechanical stress.
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2 1 From Atoms to Solids

Fig. 1.1 Different forms of carbon-based solids. Left: A diamond in raw form, in the shape of an ideal
octahedron. The structure of the diamond crystal offers many equivalent planes along which it can
be cleaved, exposing a shape of very high symmetry in polished (“cut”) form. Right: Graphite
[source: Rob Lavinsky, iRocks.com CC-BY-SA-3.0, via Wikimedia Commons].

Naively, one might expect that the origin of these widely different properties is related to

great differences in the concentration of atoms, and correspondingly that of electrons. This

is far from the truth. Concentrations of atoms in a solid range from 1022 cm−3 in Cs, a rep-

resentative alkali metal, to 17 × 1022 cm−3 in C, a representative covalently bonded solid.

Anywhere from one to a dozen electrons per atom participate actively in determining the

properties of solids. These considerations give a range of atomic concentrations of roughly

20, and of available electron concentrations1 of roughly 100. These ranges are nowhere

close to the ranges of yield stresses and electrical resistivities mentioned above. Rather, the

variation of the properties of solids has to do with the specific ways in which the available

electrons of the constituent atoms interact when these atoms are brought together at dis-

tances of a few angstroms (1 Å = 10−10 m = 10−1 nm). Typical distances between nearest-

neighbor atoms in solids range from 1.5 to 3 Å. The way in which the available electrons

interact determines the atomic structure, and this in turn determines all the other properties

of the solid, including mechanical, electrical, optical, thermal, and magnetic properties.

1.1 Electronic Structure of Atoms

We invoked above, on several occasions, the term “available electrons” for specific types

of atoms. This is not a very precise term, but was intended to convey the message that not

all of the electrons of an atom are necessarily involved in determining the properties of a

solid in which this atom exists. Some electrons eagerly participate in the formation of the

solid, by being shared among several atoms and thus serving as the “glue” that holds those

atoms together, while other electrons are very tightly bound to the nuclei of the constituent

1 The highest concentration of atoms does not correspond to the highest number of available electrons per atom.
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Fig. 1.2 Filling of electronic shells for the elements in the Periodic Table with atomic numbers Z = 1–18: s
shells (l = 0, m = 0) are represented by one red box, p shells (l = 1, m = 0, ±1) by three blue
boxes, and d shells (l = 2, m = 0, ±1, ±2) by five green boxes. Each box can contain up to two
electrons of opposite spin (up and down arrows). For each element, we show the values of the
principal (n) and angular momentum (l) quantum numbers, as well as the value of the magnetic (m)
quantum number of the last electron.

atoms, almost in exactly the same way as if the atoms were in complete isolation from each

other; the latter electrons play essentially no role in determining the properties of the solid.

This is an important distinction, which deserves further discussion.

The solution of the Schrödinger equation for the isolated atom produces a number of

states in which electrons can exist. The total number of electrons in the neutral atom, equal

to the total number of protons in its nucleus, called the atomic number Z, determines

how many of the allowed states are occupied. The occupation of the allowed states leads

to a certain number of shells being completely full (the ones with the lowest energy and

wavefunctions that are closest to the nucleus), while some shells can be partially filled

(the ones with higher energy and wavefunctions that extend farther from the nucleus).2

A schematic representation of the filling of electronic shells for atoms with Z = 1–36 is

given in Figs 1.2 and 1.3, where it becomes obvious which shells are completely filled and

which are partially filled by electrons for each element. A continuation of this sequence of

filling of electronic shells leads to the Periodic Table, presented in the next section.

The periodic filling of the electronic shells is actually quite evident in some basic

properties of atoms, like their physical size or their tendency to attract electrons, referred

2 A more detailed discussion is given in Appendix C.
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Fig. 1.3 Filling of electronic shells for elements with atomic numbers Z = 19–36. The notation is the same
as in Fig. 1.2. Elements marked by an asterisk have electronic levels filled out of the regular order:

for example, Cu has a 3d104s1 shell rather than a 3d94s2 shell.
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Fig. 1.4 Periodic behavior of the properties of the elements: atomic radii (Å) and electronegativity scale
(ENS), for elements with atomic numbers Z from 1 to 54. The values corresponding to closed
electronic shells, Z = 2, 10, 18, 36, 54, that is, the elements He, Ne, Ar, Kr, Xe, are indicated. The
color coding corresponds to the different types of electronic shells that are being gradually filled:
red for the s shells, blue for the p shells, and green for the d shells.
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5 1.2 Forming Bonds Between Atoms

to as the “electronegativity scale” (ENS), as shown in Fig. 1.4. Interestingly, as the number

of protons in the nucleus increases (Z increases), the electron wavefunctions become more

compact and the atom shrinks in size, while the levels for a particular (n, l) set are being

gradually filled by electrons. After a shell is full, as is the case for the elements He (Z = 2),

Ne (Z = 10), Ar (Z = 18), and Kr (Z = 36), the so-called noble gases, the size is a

local minimum; there is an abrupt increase in size for the elements with one more proton,

when the next electronic shell starts being filled. Similarly, the ENS exhibits a regular

pattern, that is, with steadily increasing values within each partially filled shell and the

highest value corresponding to those elements that are just one electron short of having a

completely filled electronic shell, like F (Z = 9), Cl (Z = 17), Br (Z = 35).

1.2 Forming Bonds Between Atoms

The electrons in the outermost, partially filled shells of the isolated atom are the ones

that interact strongly with similar electrons in neighboring atoms in the solid; these are

called valence electrons, while the remaining electrons in the completely filled shells of

the atom are called core electrons. This is shown schematically in Fig. 1.5. Core electrons

are essentially unaffected when the atom is surrounded by its neighbors in the solid. For

most practical purposes it is quite reasonable to neglect the presence of the core electrons

as far as the solid is concerned, and consider how the valence electrons behave. The core

electrons and the nucleus form the ion, which has a positive net charge equal in magnitude

to the number of valence electrons. The description of the solid can then be based on the

behavior of ions and the accompanying valence electrons.

The classification of electrons in the atom into core and valence is very useful when we

address the issue of how atoms come together to form a solid. This is illustrated next in

two representative and very broad cases. The first concerns the type of bonding found in

metallic solids, the second the type of bonding common in insulating or semiconducting

materials, called covalent bonding.

Fig. 1.5 Schematic representation of the core and valence electrons in an atom, shown as the red and blue
clouds, respectively.
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6 1 From Atoms to Solids

1.2.1 The Essence of Metallic Bonding: The Free-Electron Model

The simplest possible arrangement of the valence electrons is to have them stripped apart

from the ions and distributed uniformly through the solid. This is illustrated in Fig. 1.6.

The bonding comes from the fact that the electrons are now shared by all the ions and act

as a glue between them. The total energy Etot of the system is then lower than the energy

of isolated, neutral ions. The difference is defined as the “binding energy,” Eb, of the solid.

This quantity is characteristic of the stability of the solid. To make it a number independent

of the size of the solid, we define it as the energy per atom gained by putting all the atoms

together so they can share their valence electrons. For a system composed of N atoms, each

with energy E0 when isolated from all the others, we have:

Eb = 1

N
(Etot − NE0) (1.1)

The general behavior of the binding energy is shown in Fig. 1.6: when the atoms are far

apart, the binding energy is zero. The valence electrons are bound to the ions, occupying

states with energy lower than zero; in the simple example shown in Fig. 1.6, this energy

is labeled ǫ0 for the case of the isolated atoms. When the atoms are brought together, the

attractive potential due to the presence of many ions leads to lower values for the energy

of the bound valence electrons (blue line). However, there is also a Coulomb repulsion

Ec between the positive ions (green line). The competition between the two terms leads

to a binding energy per atom Eb that is negative, that is, overall the system gains energy

by having all the electrons shared among all the ions. When the distance between the

E
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Fig. 1.6 Illustration of metallic bonding between many atoms. Left: The binding energy Eb of the solid as a
function of the distance between the ions; Ec is the Coulomb repulsion between the ions and ǫ0 is
the energy of the valence electrons in the isolated neutral atom. The insets indicate schematically
the charge distribution, with red circles representing the ions and blue clouds representing the
valence electrons which end up being uniformly distributed between the ions in the solid.
Right: The corresponding energy-level diagram. The original N degenerate levels of the isolated
individual atoms (at large distances) form a distribution of states in the solid that span a wide energy
range, as the distance between atoms decreases.
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7 1.2 Forming Bonds Between Atoms

ions becomes too small, the Coulomb repulsion between ions becomes too strong and the

binding energy rises and eventually becomes positive, at which point the solid is not stable

any longer. There is an optimal distance between the ions at which the binding energy

attains its lowest value, which corresponds to the optimal structure of the solid.

An interesting issue is the behavior of the electron energy levels as the distance between

the ions decreases. As shown in the right panel of Fig. 1.6, these energy levels are

degenerate in the case of isolated atoms. Because electrons are fermions, they cannot all

reside on the same energy level when the atoms are very close to each other. As a result,

when the atoms get closer together the electron energy levels break the degeneracy and

form a distribution over a range of values. The closer the distance between ions, the wider

this energy range is, as the distance between ions approaches that of interatomic distances

in the solid. In the limit of a very large number of atoms (as is the case for typical solids),

the difference between consecutive energy values becomes infinitesimally small and the

electron energy levels form a continuum distribution.

To put these notions on a more quantitative basis, we will use a very simple model

in which the ionic potential is a uniformly distributed positive background. This frees us

from needing to consider the detailed behavior of the ions. Moreover, we will neglect any

kind of interaction between the electrons (coming from their Coulomb repulsion or from

exchange and correlation effects). This is referred to as the “free-electron” or “jellium”

model. Although evidently oversimplified, this model is quite useful in describing many of

the properties of metallic solids, at least in a qualitative way.

In this model, the electronic states must also reflect this symmetry of the potential which

is uniform, so they must be plane waves:

ψi(r) = 1√
V

eiki·r (1.2)

where V is the volume of the solid and ki the wave-vector which characterizes state ψi.

Since the wave-vectors suffice to characterize the single-particle states, we will use those

as the only index, that is, ψi → ψk. Plane waves are actually a very convenient and

useful basis for expressing various physical quantities. In particular, they allow the use

of Fourier transform techniques, which simplify the calculations. In the following we

will be using relations implied by the Fourier transform method, which are discussed in

Appendix A.

We identify the state of such an electron by its wave-vector k, which takes values from 0

up to a maximum magnitude kF, called the “Fermi momentum.” In three-dimensional (3D)

cartesian coordinates the wave-vector is written as k = kxx̂ + kyŷ + kzẑ and the energy of

the state with wave-vector k is:

ǫk = h̄2k2

2me

(1.3)

We consider that the solid is a rectangular object with sides Lx, Ly, Lz, with V = LxLyLz

its total volume. For a typical solid, the values of Lx, Ly, Lz are very large on the scale of
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8 1 From Atoms to Solids

atomic units, of order 108–109 a0, where a0 is the Bohr radius (a0 = 0.529177 Å, with

1 Å = 10−10 m). From Fourier analysis, we can take dkx, dky, dkz to be given by:

dkxdkydkz = (2π )3

LxLyLz

�⇒ dk

(2π )3
= 1

V
�⇒ lim

Lx,Ly,Lz→∞

∑

k

= V

∫

dk

(2π )3
(1.4)

as discussed in Appendix A, Eq. (A.46). For each free-electron state characterized by k

there is a multiplicity factor of 2 coming from the spin, which allows each electron to exist

in two possible states, spin up or down, for a given value of its energy. Therefore, the total

number of states available to the system is:

2
∑

|k|≤kF

= 2V

∫ kF

0

dk

(2π )3
= k3

F

3π2
V = N (1.5)

which we have set equal to the total number of electrons N in the solid. This leads to the

following relation between the density n = N/V and the Fermi momentum kF:

n = k3
F

3π2
(1.6)

which in turn gives for the energy of the highest occupied state ǫF, called the “Fermi

energy”:

ǫF = h̄2k2
F

2me

= h̄2(3π2n)2/3

2me

(1.7)

These results help us make some sense of the spectrum of energy levels in the solid: the

energy of electronic states is now given by Eq. (1.3), which is a continuous set of values,

from 0 up to ǫF. This is to be compared to the set of N individual atomic levels, when

the atoms are isolated, as illustrated in Fig. 1.6. Moreover, if we assume that each atom

has one valence electron in the atomic state, we will need only N/2 free-electron states to

accommodate all these electrons in the solid due to spin degeneracy, as worked out above,

in Eq. (1.5). The binding or cohesive energy in this case comes from the much more delo-

calized nature of the states in the solid as compared to those in individual isolated atoms.

Example 1.1 1D model of atoms in a box

To illustrate these ideas, we consider a simple example of six “atoms” in one

dimension, each represented by a box of size a, as shown in Fig. 1.7. Consistent with

the free-electron model, we will take the electron in such an atom to have a sinusoidal

wavefunction ψ0(x) and energy ǫ0 given by:

ψ0(x) =
√

2

a
sin

(πx

a

)

, ǫ0 = h̄2π2

2mea2

corresponding to the largest possible wavelength of λ0 = 2a within the box of

the isolated atom. If we condense these six atoms into a one-dimensional (1D)

“solid” of size L = 6a, the lowest energy level in the solid will have energy

ǫ1 = ǫ0/36 = 0.028ǫ0. Assuming that each atom has one valence electron, all

the electrons in this 1D solid can be accommodated by the three lowest states with

www.cambridge.org/9780521117111
www.cambridge.org


Cambridge University Press
978-0-521-11711-1 — Quantum Theory of Materials
Efthimios Kaxiras , John D. Joannopoulos 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

9 1.2 Forming Bonds Between Atoms
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0

Fig. 1.7 A simple 1D model of the energy levels associated with the free-electron model for a system
of six “atoms.” The red sinusoidal curves represent the single-particle wavefunctions. In each
atom, contained in a small box of size a, the lowest free-electron state within the box has
wavelength λ = 2a and energy ǫ0 = h̄2π2/2mea2. For six atoms forming a “solid” of size
L = 6a, the six lowest-energy states and their corresponding energies in units of ǫ0 are shown
on the vertical axis.

energies ǫ1, ǫ2 = 0.111ǫ0, ǫ3 = 0.25ǫ0, giving a much lower total energy for the

condensed system of Etot = 0.778ǫ0 compared to the six isolated atoms, and a binding

energy per atom of Eb = −0.870ǫ0. This component, namely the electronic kinetic

energy contribution to the total energy, is the dominant component within our simple

model. The actual total energy of the solid must include also the Coulomb repulsion

of the electrons, as well as the electron–ion attraction, but these terms cancel each

other for uniform and equal densities of the two oppositely charged sets of particles.

Generalizing this simple model, and considering only the kinetic energy of the electrons

in the free-electron model, including a factor of 2 for the spin degeneracy, we find that the

total energy of this system is given by:

Ekin = 2
∑

|k|≤kF

ǫk = 2V

∫ kF

0

dk

(2π )3

h̄2k2

2me

= V

π2

h̄2k5
F

10me

= 3

5
NǫF (1.8)

This quantity is evidently positive and only depends on the density of electrons in the solid,

n. The attraction of electrons to the positive charge of the ions provides the bonding for

the atoms in the solid, but we have eliminated these terms from the free-electron model.

In thinking about the properties of metallic solids, it is often useful to express equations

in terms of another quantity, called rs, which is defined as the radius of the sphere whose

volume corresponds to the average volume per electron in the solid:

4π

3
r3

s = V

N
= n−1 = 3π2

k3
F

(1.9)
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10 1 From Atoms to Solids

and rs is typically measured in atomic units. This gives the following expression for kF:

kF = (9π/4)1/3

rs

�⇒ kFa0 = (9π/4)1/3

(rs/a0)
(1.10)

where the last expression contains the dimensionless combinations of variables kFa0 and

rs/a0. In actual metals (rs/a0) varies between 2 and 6.

It is helpful to introduce here the units of energy that are typically involved in the

formation of bonds in solids. The rydberg (Ry) is the natural unit for energies in atoms:

h̄2

2mea2
0

= e2

2a0

= 1 Ry (1.11)

Another useful unit is the electron-volt (eV), the potential energy gained by an electron

when it moves across a voltage difference of 1 V. The rydberg and the electron-volt are

related by:

1 Ry = 13.6058 eV (1.12)

Typical binding energies per atom, for metallic solids, are in the range of a few electron-

volts.

1.2.2 The Essence of Covalent Bonding

We consider next what can happen when two atoms of the same type come together to form

a diatomic molecule. For simplicity, we will assume that each atom has only one valence

electron outside its core, in a state with energy ǫ1, as indicated in Fig. 1.8; this corresponds,

1

b
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Fig. 1.8 Schematic representation of the formation of a bond between two atoms with one valence electron
each. Left: When separated, the atoms each have a valence state of energy ǫ1 with one electron in it;
when they are brought together, new states are formed, the bonding state with energy ǫb < ǫ1 and
the anti-bonding state with energy ǫa > ǫ1; the two available valence electrons occupy the
lower-energy bonding state. Right: The binding energy Eb per atom (black line) of a diatomic
molecule as a function of the distance d between the ions composing it. The energy of the bonding
state ǫb is shown as a red line; for large distances it approaches the value ǫ1 of the electron state in
the isolated atom. The Coulomb repulsion between the two cores (Ec) is shown as a green line.
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