

A Short Course in Computational Science and Engineering

C++, Java and Octave Numerical Programming with Free Software Tools

Building on his highly successful textbook on C++, David Yevick provides a concise yet comprehensive one-stop course in three key programming languages, C++, Java and Octave (a freeware alternative to MATLAB[®]).

Employing only public-domain software to ensure straightforward implementation for all readers, this book presents a unique overview of numerical and programming techniques relevant to scientific programming, including object-oriented programming, elementary and advanced topics in numerical analysis, physical system modeling, scientific graphics, software engineering and performance issues. Relevant features of each programming language are illustrated with short, incisive examples, and the installation and application of the software are described in detail. Compact, transparent code in all three programming languages is applied to the fundamental equations of quantum mechanics, electromagnetics, mechanics and statistical mechanics. Uncommented versions of the code that can be immediately modified and adapted are provided online for the more involved programs.

This compact, practical text is an invaluable introduction for students in all undergraduate- and graduate-level courses in the physical sciences or engineering that require numerical modeling, and is also a key reference for instructors and scientific programmers.

DAVID YEVICK is a Professor of Physics at the University of Waterloo. He has been engaged for 30 years in scientific programming in various fields of optical communications and solid state physics at numerous university and industrial establishments, where he performed pioneering work on the numerical modeling of optical communication devices and systems. Professor Yevick is currently a Fellow of the American Physical Society, the Institute of Electrical and Electronics Engineers and the Optical Society of America as well as a registered Professional Engineer (Ontario). He has taught scientific and engineering programming for over 20 years and has authored or co-authored over 170 refereed journal articles.

A Short Course in Computational Science and Engineering

C₊₊, Java and Octave numerical programming with free software tools

David Yevick

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9780521116817

© David Yevick 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2012

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Yevick, David.

A short course in computational science and engineering: C++, Java, and Octave numerical programming with free software tools / David Yevick.

p. cm.

Includes index.

ISBN 978-0-521-11681-7 (hardback)

 $1.\ Computer\ programming-Textbooks.\quad 2.\ Computer\ science-Textbooks.\quad I.\ Title.$

QA76.6.Y48 2012

005.1 - dc23 2011044368

ISBN 978-0-521-11681-7 Hardback

Additional resources for this publication at www.cambridge.org/yevick

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

אָמֵר רַבִּי יוֹמֵי בֶּן קִסְמָא, פַּעַם אַחַת הָיִיתִי מְהַלֵּךְ בַּדֶּרֶךְ וּפָּגַע בִּי אָדָם אֶחָד, וְנָתַן לִי שֶׁלוֹם, וְהָחֲזַרְתִּי לוֹ שֶׁלוֹם, אָמֵר לִי, רַבִּי מֵאֵיזֶה מָקוֹם אָתָּה, אָמֵרְתִּי לוֹ, מֵעִיר גְּדוֹלָה שֶׁל חֲכָמִים וְשֶׁל סוֹפְרִים אָנִי, אָמַר לִי, רַבִּי רְצוֹנְךָ שֶׁתָּדוּר עִמָּנוּ בִּמְקוֹמֵנוּ וַאָנִי אָתֵן לְדָ אֶלֶף אָלֶפִים דִּנְרֵי זָהָב וַאָבָנִים אָמֵרְתִּי לוֹ אִם אַתָּה נוֹתֵן לִי כָּל כֶּסֶף וְזָהָב וַאֲבָנִים ,טוֹבוֹת וּמַרְגָּלְיּוֹת טוֹבוֹת וּמַרְגָּלִיּוֹת שֵׁבַּעוֹלָם, אֵינִי דַר אָלֵא בָּמִקוֹם תּוֹרָה

Rabbi Yose ben Kisma said: Once I was walking on the road, when a certain man met me. He greeted me and I returned his greeting. He said to me, 'Rabbi, from what place are you?' I said to him, 'I am from a great city of scholars and sages.' He said to me, 'Rabbi, would you be willing to live with us in our place? I would give you thousands upon thousands of golden dinars, precious stones and pearls.' I replied, 'Even if you were to give me all the silver and gold, precious stones and pearls in the world, I would dwell nowhere but in a place of Torah.' (Ethics of the Fathers 6:9) Rabbi Jose, **Kismas** son. berättade: En gång gick jag ut och vandrade, då mötte mig en människa, som hälsade mig, och jag besvarde hans hälsning. Han sporde mig: Rabbi, varifrån är du, och jag svarde honom: Från en stor stad, full av visa män och skriftlärda. Då sade han till mig: Rabbi, om du vill bo hos oss i vår stad, vill jag giva dig tusen gånger tusen guldmynt, ädelstenar och pärlor. Jag svarade honom: Om du så gåve mig all världens silver, guld, ädelstenar och pärlor, skulle jag aldrig vilja bo på ett annat ställe än där Torahn har sin hemvist. (Fädernas Tankespråk 6:9)

Contents

1	Int	roduction	page 1
	1.1	Objective	1
	1.2	Presentation	1
	1.3	Programming languages	2
	1.4	Language standards	3
	1.5	Chapter summary	4
	1.6	How to use this text	4
	1.7	Additional and alternative software packages	4
2	Oct	ave programming	5
	2.1	Obtaining octave	5
	2.2	Command summary	5
	2.3	Logistic map	14
3	Ins	talling and running the Dev-C++ programming	
	env	ironment	15
	3.1	Compiling and running a first program	15
	3.2	The Dev-C++ debugger	17
	3.3	Installing DISLIN	19
	3.4	A first graphics program	19
	3.5	The help system	20
	3.6	Example	20
4	Int	roduction to computer and software architecture	22
	4.1	Computational methods	22
	4.2	Hardware architecture	23
	4.3	Software architecture	24
	4.4	The operating system and application software	25
5	Fur	ndamental concepts	26
	5.1	Overview of program structure	26
	5.2	Tokens, names and keywords	26

vii

viii Contents

	<i>-</i> 2	T 1 4 4 4	27
	5.3	Expressions and statements	27
		Constants, variables and identifiers	27
		Constant and variable types	27
		Block structure	30
		Declarations, definitions and scope	31
		rvalues and lvalues	31
		Operators – precedence and associativity	31
		The const keyword	32
		Formatting conventions	33
	5.12	Comments	33
6	Proc	edural programming basics	35
	6.1	Scientific software development	35
	6.2	The main() function	36
		Namespaces	37
		Preprocessor directives and	
		#include statements	38
	6.5	Arithmetic and logical operators	39
		The bool and enum types	40
	6.7	Control flow, if statements and implicit	
		blocks	40
	6.8	The for statement	42
	6.9	while and dowhile statements	42
	6.10	The break, continue and	
		exit() statements	43
	6.11	The typedef keyword	44
	6.12	Input and output streams	44
	6.13	File streams	45
	6.14	Casts	45
	6.15	Functions	46
	6.16	Principles of function operation	46
	6.17	Function declarations and prototypes	48
	6.18	Enumerators and functions	48
	6.19	Overloading and argument conversion	48
	6.20	Built-in functions and header files	49
	6.21	The assert statement and try and	
		catch blocks	50
	6.22	Multiple return statements	51
	6.23	Default parameters	52
		Functions and global variables	52
	6.25	Inline functions	53
	6.26	Recursive functions	53
	6.27	Modular programming	54

		Contents	
	6.28 Arrays	54	
	6.29 Program errors	55	
	6.30 Numerical errors with floating-point types	56	
_		70	
7	An introduction to object-oriented analysis	58	
	7.1 Procedural versus object-oriented programming	58	
	7.2 Problem definition	60	
	7.3 Requirements specification	61	
	7.4 UML diagrams	61	
	7.5 Classes and objects	61	
	7.6 Object discovery	63	
	7.7 Inheritance	65	
8	C++ object-oriented programming syntax	66	
	8.1 Class declaration	66	
	8.2 Class definition and member functions	66	
	8.3 Object creation and polymorphism	68	
	8.4 Information hiding	70	
	8.5 Constructors	71	
	8.6 Examples	73	
	8.7 Wrappering legacy code	75	
	8.8 Inheritance	76	
	8.9 The "protected" keyword	78	
	8.10 Multifile programs	78	
	8.11 const member functions	81	
	6.11 Const member functions	01	
9	Arrays and matrices	83	
	9.1 Data structures and arrays	83	
	9.2 Array definition and initialization	83	
	9.3 Array manipulation and memory access	84	
	9.4 Arrays as function parameters	86	
	9.5 Returning arrays as objects and object arrays	87	
	9.6 const arrays	88	
	9.7 Multidimensional arrays	89	
	9.8 Multidimensional array storage and loop order	90	
	9.9 Multidimensional arrays as function arguments	91	
10	Input and output streams	93	
10	10.1 The iostream class and stream manipulators	93	
	10.1 The lostream class and stream manipulators 10.2 File streams	95 95	
	10.2 The streams 10.3 The string class and string streams	93 97	
	9		
	10.4 The toString() class member	98	
	10.5 The printf function	99	

ix

x Contents

11	Refer	rences	101
	11.1	Basic properties	101
	11.2	References as function arguments	102
	11.3	Reference member variables	103
	11.4	const reference variables	103
	11.5	Reference return values	104
12	Point	ers and dynamic memory allocation	106
	12.1	Introduction to pointers	106
	12.2	Initializing pointer variables	107
	12.3	The address-of and dereferencing operators	107
	12.4	Uninitialized pointer errors	108
	12.5	The const keyword and pointers	109
	12.6	Pointer arithmetic	110
	12.7	Pointers and arrays	110
	12.8	Pointer comparisons	111
	12.9	Pointers to pointers and matrices	111
	12.10	String manipulation	112
	12.11	Static and dynamic memory allocation	113
	12.12	Memory leaks	115
	12.13	Dangling pointers	115
	12.14	Pointers in function blocks	117
	12.15	Dynamic memory allocation within functions	118
	12.16	Dynamically allocated matrices	119
	12.17	Dynamically allocated matrices as function arguments	120
	12.18	Pointer data structures and linked lists	121
13	Mem	ory management	123
	13.1	The this pointer	123
	13.2	The friend keyword	124
	13.3	Operators	125
	13.4	Destructors	127
	13.5	Assignment operators	128
	13.6	Copy constructors	130
14	The s	tatic keyword, multiple and virtual inheritance,	
	temp	lates and the STL	132
	14.1	Static variables	132
	14.2	Static class members	132
	14.3	Virtual functions	134
	14.4	Heterogeneous object collections and runtime type	
		identification	135
	14.5	Abstract base classes and interfaces	136

			Contents	
	14.6	Multiple inheritance	137	
	14.7	Virtual inheritance	138	
	14.8	User-defined conversions	138	
	14.9	Function templates	139	
		Templates and classes	140	
		The complex class	142	
		The standard template library	143	
		Structures, unions and nested classes	147	
		Bit-fields and operators	148	
		Program optimization	149	
	1	riogium opumizumen	1.7	
15	Crea	ting a Java development environment	152	
	15.1	Basic setup	152	
	15.2	Command-line operation	153	
	15.3	A first graphical Java program	155	
	15.4	DISLIN applet	155	
	15.5	Graphics applet	156	
	15.6	Packages	157	
	15.7	Static (instance) and class members	159	
16	Basic	c Java programming constructs	161	
	16.1	Comments	161	
	16.2	Primitive types	161	
	16.3	Conversions	163	
	16.4	Operators	164	
	16.5	Control logic	165	
	16.6	Enumerations	167	
17		classes and objects	168	
		Class definition	168	
		Inheritance	170	
	17.3	Java references and functions	171	
	17.4	Exceptions	173	
	17.5	Basic Java reference types	174	
	17.6	Input and ouput	177	
	17.7	File I/O	178	
10		1.T	150	
18			179	
	18.1	Dynamic method dispatch	179	
	18.2	Abstract classes	180	
	18.3	Interfaces	180	
	18.4	Java event handling	182	
	18.5	Multithreading	184	

хi

xii Contents

	18.6	Serialization	186
	18.7	Generic types	186
19	Intro	oductory numerical analysis	188
	19.1		188
	19.2	Error dependence	190
	19.3	Graphical error analysis	190
	19.4	Analytic error analysis – higher-order methods	192
	19.5	Extrapolation	193
	19.6	The derivative calculator class	193
	19.7	Integration	194
	19.8	Root-finding procedures	196
		Minimization	198
20	Line	ar algebra	200
	20.1	Matrices	200
	20.2	Linear-equation solvers	200
	20.3	Errors and condition numbers	204
	20.4	Application: least-squares procedure	204
	20.5	Eigenvalues and iterative eigenvalue solvers	206
21	Four	ier transforms	208
22	Diffe	erential equations	212
	22.1	Euler's method	212
	22.2	Error analysis	214
	22.3	The Runge–Kutta procedure	216
23	Mon	te Carlo methods	218
		Monte Carlo integration	218
	23.2	Monte Carlo evaluation of distribution functions	219
	23.3	Importance sampling	220
	23.4	The Metropolis algorithm	221
	23.5	Multicanonical methods	224
	23.6	Particle simulations	225
	23.7	The Ising model	227
24	Part	ial differential equations	230
	24.1	Scientific applications	230
	24.2	Direct solution methods	234
	24.3	Hyperbolic differential equations and electromagnetics	235
	24.4	Elliptic equations	240
	24.5	Split-operator methods for parabolic differential equations	242

		Contents	xiii
24.6	Symplectic evolution operators in classical mechanics	245	
24.7	Fast Fourier transform methods in optics	246	
24.8	The Crank–Nicholson method in quantum mechanics	252	
24.9	Finite-difference and finite-element procedures	254	
Index		259	