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Chapter 1

Introduction

Soon after the publication of my C++ textbook, A First Course in Computational

Science and Object-Oriented Programming with C++, in 2005, I conceived of

including a yet more compact introduction to C++ in a survey of the entire field

of scientific programming. Drawing on 20 years of experience of teaching pro-

gramming at all levels in both physics and electrical engineering departments,

I resolved to both summarize my previous treatment of C++ and incorporate

a discussion of the Octave and Java programming languages, focusing on their

conceptual foundations. Finally, I would insert many additional scientific pro-

gramming examples, emphasizing short programs that illustrate key algorithms.

By employing only free software, this would create a uniquely comprehensive

treatment of the full set of steps from compiler installation to sophisticated

scientific programming.

1.1 Objective

This textbook overviews modern scientific programming, including numerical

analysis, object-oriented programming, scientific graphics, software engineer-

ing, numerical analysis and physical system modeling. Consequently, knowl-

edge of the material will provide sufficient background to enable the reader

to analyze and solve nearly all normally encountered scientific programming

tasks.

1.2 Presentation

The text is concise, focusing on essential concepts. Examples are intention-

ally short and free of extraneous features. To promote retention, the book

repeats key topics in cycles of gradually increasing difficulty. Further, since

the process of learning computer language shares many similarities with that of

acquiring a spoken language, important code is highlighted in gray. Memoriz-

ing these features greatly decreases the time required to achieve proficiency in

programming.
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2 Introduction

1.3 Programming languages

Computing paradigms have evolved with time from the implementation of indi-

vidual operations within a computing device to high-level structures that closely

resemble interactions of physical objects with their environment. These concepts

have simultaneously been realized through languages that have progressed from

machine language to procedural, object-oriented and visual programming.

General-purpose procedural languages. A procedural language is composed

of a structured sequence of commands, which may be further organized into

modules termed functions or subroutines. A program implements a series of

commands that are sequenced through logical statements. This strategy yields

languages that are easily learned and applied. Especially early procedural lan-

guages such as FORTRAN, however, contain numerous unsafe constructs that

invariably lead to coding errors.

Scientific procedural languages. To simplify small proof-of-principle com-

putations, specialized scientific languages such as MATLAB R© and Octave and

symbolic manipulation languages such as MAPLE R© or Mathematica R© provide

an easily learned high-level user interface to a unified built-in array of easily

called and highly optimized numerical, scientific and graphical libraries. MAT-

LAB code can be transformed into C++ through an add-on product while C++

and FORTRAN routines can be called by a MATLAB program with some effort.

Additionally, MATLAB and similar programs originate from a single commercial

source and therefore function nearly identically across all supported platforms

(running the same version number). However, the suppression of advanced fea-

tures such as classes, type-checking and user-controlled memory management

can lead to structural confusion, programming errors and runtime inefficiency

for larger problems. Further, the software is unavailable at many sites because

of its substantial cost, although this can, however, increasingly be circumvented,

through free software packages that imitate MATLAB commands. This textbook

accordingly employs the most widely employed alternative, GNU Octave.

Object-oriented languages. The fundamental high-level unit in modern pro-

gramming languages is an object. An object is a simplified model or abstraction

of a particular entity. To illustrate, consider for definiteness a voltage meter. The

meter has many attributes – in the extreme case the position and velocity of each

atom – but only a few of these are typically of interest. These relevant attributes,

which could include both user-accessible, public, data and behaviors, such as

the voltage reading and the meter’s response to depressing the power-on switch,

and inaccessible, private, characteristics, such as the currents through individual

circuit elements, compose the relevant abstraction of the object. By analogy, in

a C++ program, public properties can be accessed throughout the code while

private members are accessible only to functions that exist within the object

itself, restricting the associated code region subject to inadvertent errors.

In an object-oriented language, objects with similar properties are described

by a class. Two functions or variables with the same name that belong to different
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1.4 C++ standards 3

classes are considered to be unrelated, circumventing name collisions. A class

can incorporate the features of a second class by inheriting its non-private

properties; the new, derived, class can then employ or redefine the properties

of the original, base, class without recoding. Refinements to the original class

automatically propagate to the new class.

Since additional programming syntax is required in order to create and manip-

ulate objects and classes, object-oriented languages require more time to learn

than procedural languages. However, the structure of the resulting program

closely represents the physical objects that are being modeled. Accordingly,

object-oriented development is advisable for large programs or programs that

will be frequently revised.

The C++ language. C++, which extended the preexisting C procedural pro-

gramming language, constituted the first widespread object-oriented language.

Numerous scientific programming packages are at present available in C++,

while FORTRAN programs can be, with some effort, accessed from C++, c.f.

Appendix D of my companion textbook A First Course in Computational Science

and Object-Oriented Programming with C++. However, the additional func-

tionality of C++ enables manipulations that can introduce unexpected depen-

dences among variables. To ascertain these dependences, C++ typically runs

more slowly than FORTRAN, although advanced C++ language features can

be employed to circumvent these difficulties, as discussed in Chapter 21 of the

above reference.

Java: As a more recent object-oriented language, Java provides a far broader

standard feature set than C++. Classes that e.g. handle graphics and internet com-

munications are native to the language and in principle function identically across

all Java implementations (although, in reality, version and machine dependences

exist). Modern programming features such as multithreading and object serial-

ization are additionally included. However, since the language is oriented toward

the corporate market, many design choices are unfavorable for sophisticated sci-

entific programming. For example, C and C++ contain high-level commands

that enable direct access to hardware resources. These include addressing and

modifying the contents of individual memory locations and precisely allocating

and releasing the memory available to a program during execution. Since severe

errors result if such manipulations are improperly performed, Java handles such

operations automatically, at the cost of longer or unpredictable execution times.

Further, extensive mathematical or scientific program libraries are ported only

very slowly, if at all, to new programming languages.

1.4 Language standards

As requirements evolve, programming languages undergo periodic revision by

a standards organization. For relatively new languages such as Java, revisions

can be significant; further, existing language elements can become deprecated

(unsupported) and eventually obsolete. In contrast, revisions to mature languages
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4 Introduction

such as C++ are relatively minor and do not affect core functionality. However,

programs employing elements of a new standard will not necessarily function on

older compilers.

1.5 Chapter summary

The organization of this book is as follows. After a short introduction to Octave

in Chapter 2, the following chapters summarize the installation of a free C++

programming environment, computer hardware and software architecture and

the basic structure and syntax of the C++ language. Chapter 7 introduces object-

oriented programming in C++, with more advanced features of C++ following in

Chapters 9–14. Chapters 15–17 discuss basic Java programming, with advanced

Java features relegated to Chapter 18. Chapters 19–24 finally discuss applied

numerical analysis in the context of numerous physical and engineering appli-

cations, including mechanics, electromagnetism, statistical mechanics, quantum

mechanics and optics.

1.6 How to use this text

The reader is encouraged to follow the steps below.

(1) Skim through the text.

(2) Reread the chapter, programming and running as many sample programs in the text

as possible. Attempt, if possible, to extend these programs.

(3) Memorize the programs or program sections marked in gray in the text. Success in

programming is largely dependent on being able to recall instantly central language

features.

1.7 Additional and alternative software packages

While comprehensive freeware and commercial C++ and Java numerical

libraries exist, such as the GNU, CERN, IMSL and NAG libraries, such rou-

tines are typically designed for a restricted set of hardware and software plat-

forms. Therefore, for smaller programs well-documented source code such as

the programs in this book will often provide a more optimal trade-off between

computational efficiency and development time.
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Chapter 2

Octave programming

For small programs or rapid prototyping of ideas and methods, the commercial

MATLAB R© language, or its freeware alternatives, offers a practical alternative

to C++ or FORTRAN. In this book, the free GNU Octave implementation is

discussed from a scientific programming perspective. After becoming familiar

with the central language constructs summarized below, the built-in Octave help

facilities conveniently provide information on specialized, infrequent commands.

2.1 Obtaining octave

The Windows and Mac installation packages for GNU Octave are currently

located at octave.sourceforge.net. Linux versions are available at the main Octave

web site www.gnu.org/software/octave. When the program is installed, a variety of

additional packages and the creation of a database of C++ components accessible

by the editor can be selected. Unless space is an issue, these options should be

chosen.

2.2 Command summary

(1) Running Octave. After clicking on the Octave icon, statements are entered interac-

tively by typing into the resulting command window at the > prompt. An Octave

session is terminated by typing quit.

(2) System commands. To change from the startup directory (folder) to the direc-

tory that either contains or will contain program files, type cd X:\dir1\dir2\ . . .

\programDirectory, where X is the partition (logical drive) containing the desired

directory and \dir1\dir2 . . . \programDirectory is an ordered sequence of the

names of the directories enclosing the directory, \programDirectory, in which the

program is located. If one or more directory names contain spaces, the entire expres-

sion containing these names must be surrounded by double apostrophes ("), e.g.

cd "X:\My Documents". Representative operating-system commands that can be

issued from the Octave prompt include mkdir directoryName, which creates the

directory directoryName, rmdir directoryName, which removes this directory,
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6 Octave programming

dir or ls, which display the contents of a directory, .., which moves to one directory

higher in the directory tree, ., which represents the current directory, rename file1.1

file2.2, which renames the file file1.1 to the name file2.2, and copy, which similarly

copies a file.

(3) MS-DOS and Unix commands. Standard DOS commands on Windows systems and

Unix commands on Unix systems are issued in Octave by typing e.g. dos 'copy file.1

file.2' or, on a Unix system, unix 'cp file.1 file.2' (single or double apostrophe). In

MATLAB such commands can also be preceded with !.

(4) Command structure and continuation lines. Octave commands end at a carriage

return, comma or semicolon; however, only a semicolon suppresses the output of

the statement from being written to the terminal. Two or more commands situated

on the same line must be separated by commas or semicolons. A statement can

span several lines but each line must normally be terminated by a three-period

continuation character, . . . .

(5) Creating and editing files. The command diary on stores subsequent commands

entered from the keyboard in a file named diary until diary off is issued. To examine

this file or to create or edit an Octave program, after navigating to the directory in

which the file resides, type edit at the command prompt, followed, where applicable,

by the name of the file to be edited or created.

(6) Comments. Any text to the right of a comment character, %, constitutes a comment

and is consequently ignored by the Octave interpreter. The beginning of a program

should contain the date, version number, title and author. Every set of statements

(a paragraph) performing a certain task should be preceeded by one or more blank

lines followed by comment lines explaining the purpose of the program unit. When

a variable is introduced, its meaning should be made clear by a comment either

above the line or on the same line to the right of the statement. Such annotations

insure the long-term readability of programs.

(7) Using help. To find and implement rarely employed commands, type first lookfor

subject to obtain a list of all commands involving the operation ‘subject’. Issuing

help commandName (or doc commandName) then provides help on the command

commandName.

(8) Octave programs. Octave program and function files must possess a .m extension;

that is, to program in Octave, first type edit from within the Octave command

window and create a file such as

S = 2;

S * . . . % Illustrates the comment and continuation symbols

S

Then, when saving the file, specify test in the "File Name" text entry field while in

the "Save File as Type" drop-down text box select MATrix LABoratory (.m). This

automatically appends the correct .m extension to the file name. If the file is saved in

a directory, e.g. X:\testDirectory, then, at the Octave prompt, type cd followed by

the directory (including, if necessary, the partition name, e.g. cd X:\testDirectory)
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2.2. Command summary 7

where test.m resides, press enter and then type test. The program test can also be

called from within another .m file within the same directory.

(9) Variable-naming conventions. For clarity, variable names should start with a small

letter, while subsequent words in the name should be capitalized, e.g. numberOf-

Points. However, in Octave a name can represent an array of any size and number

of dimensions, which can result in subtle errors. To prevent this, quantities with a

row dimension can be indicated by a trailing R, those with a column dimension as

C and a matrix with a trailing RC, e.g, systemMatrixRC. If matrices with different

dimensions are present, the row and column sizes can be further specified as in

systemMatrixR4C8. Since Octave is not a typechecked language, the above con-

ventions can still lead to severe and difficult-to-locate errors for some compound

words such as wavefunction, which can be treated as one word in certain places

and as two words (waveFunction) in others. Typing a single character incorrectly

generates similar problems. These errors, however, can be immediately identified

by typing who at the command line, which displays a list of all the currently defined

variables. Any spelling error will then be evidenced by a variable name seemingly

appearing twice in the list.

(10) Formatting conventions. Every binary operator (+, − etc.) should be surrounded

by spaces, but not unary operators as in 3 + −4.0. Indentation should be employed

for every set of statements that are under the logical control of a control statement

such as for, if, while. Commas, semicolons, parentheses and braces should, where

appropriate, be followed by spaces.

(11) Program input. To prompt the user from within a .m file to enter a single variable

or array x from the keyboard, employ x = input( 'user prompt ' ). A variable y that

can later be employed in a logical control statement to branch into different program

units is conveniently entered with y = menu( 'Select the method', 'Method A',

'Method B', 'Method C' ); which assigns the value 1, 2 or 3 to y according to the

user selection.

(12) Output formatting. The more command pages subsequent output. To write out

subsequent floating-point output with 16 digits of precision, type in format long

e, to revert to the default 5 digits, type format short e or, equivalently, format

compact.

(13) Built-in constants and functions. Important predefined scalar quantities are e, pi,

i and j, both of which represent the unit complex number, and eps, the smallest

number which when added to 1 gives a number different from 1 (machine epsilon).

However, a major problem arises if these variables are redefined, for example, the

command i = [1, 3] overwrites the intrinsic definition of i, which is not reinstated

until a further command clear i is issued. Note that i and j are frequently employed

as loop variables, so that all loop variables should instead be labeled, for example,

loop, innerLoop, outerLoop.

(14) Complex numbers. A complex number is introduced as c = 2.0 + 4.0i and then

manipulated with functions such as real( ), imag( ), conj( ), norm( ). Complex

numbers are e.g. multiplied, divided and exponentiated in standard fashion either
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8 Octave programming

by real or by other complex numbers. Functions such as cos( ), sin( ), sinh( ) yield

complex results when applied to complex quantities.

(15) Loading arrays. A variable name can represent a scalar or an array of any dimension.

A row vector is introduced as

vR = [1 2 3 4];

or

vR = [1, 2, 3, 4];

while a column vector is entered, even from the keyboard, as

vC = [1

2

3

4];

or, equivalently (since a semicolon is largely equivalent to a carriage return),

vC = [1; 2; 3; 4];

With the transpose operator .' the above column vector can also be entered as

vC = [1 2 3 4].';

A matrix

m RC =

(

1 2

3 4

)

can therefore be entered in any of the following ways:

mRC = [1 2; 3 4];

mRC = [1 2

3 4];

vR = [1 3 2 4]; mRC = reshape( vR, 2, 2 );

vC = [1

3

2

4]; mRC = reshape( vC, 2, 2 );

(The order in which a vector is reshaped indicates that matrix elements with succes-

sive values of the leftmost, column, index are stored next to each other in memory.)

The matrix element (mRC)12 is subsequently accessed by mRC(1, 2). Since scalars

and arrays are manipulated identically, arrays with multiple dimensions are con-

structed from component vectors or from subarrays in the same manner as from

scalar quantities, e.g. vR4 = [[1 2] [1 2]] yields [1 2 1 2];, while mBlockRC = [mRC

mRC; mRC mRC]; is a matrix of twice the dimension of mRC. While a vector

or matrix expands dynamically as new elements are added as in vR = [1 2]; vR(3)

= 3; this is computationally inefficient and memory should instead be preallocated

through a statement such as vR = zeros( 1, n ), which creates a row vector of n zero

elements.
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2.2. Command summary 9

(16) Size and length. Octave maintains a record of the size of an array to prevent element

access outside this range. Hence mRC(1, 3) yields an error if mRC is a 2 × 2 matrix.

The command size( mRC ) for an M × N matrix returns the array [M, N]. For a

single-dimension array, length( vR ) returns the length of the array vR. However,

when applied to a two-dimensionsal array length( mRC ) returns the maximum

value of M and N, possibly leading to unexpected errors.

(17) Matrix operations. The n × n identity matrix is represented by eye( n ) or eye( n, n ),

while the n × n matrix with all unity elements is denoted ones( n ) or ones( n, n ).

If s = 2 and mRC = [1 2; 3 4] as in item (15) above, then

s + mRC = s ∗ ones (2,2) + mRC ⇒

(

3 4

5 6

)

while

s ∗ eye (2, 2) + mRC ⇒

(

3 2

3 6

)

Very often, errors arise because of failure to differentiate between these. Multiplica-

tion similarly possesses different meanings depending on variable type. Multiplying

or dividing a matrix mRC by a scalar s multiplies (divides) all elements of mRC

by s while mRC * mRC symbolizes normal matrix multiplication and

mRC. ∗ mRC ⇒

(

1 4

9 16

)

implements component-by-component multiplication. Similarly mRCˆ2 is mRC

* mRC, while mRC.ˆ2 instead squares the individual elements of mRC. The

dot operator functions analogously for other arithmetic operations such as mRC

./ nRC, which yields a matrix whose (i, j)th element is simply (mRC)ij/(nRC)ij.

Standard functions such as cos( mRC ) operate on the individual elements of mRC,

here returning the matrix formed by taking the cosine of each element. Two easily

confused operations are array (matrix) transpose without complex conjugation, .',

and transpose with complex conjugation, '. Note that the simpler syntax is applied to

the Hermitian conjugate operation, since this yields the standard norm of complex

(as well as real) arrays. For a vector vR = [1, 2] with elements (vR)ij, the dot or inner

product without complex conjugation is given by vR * vR.', while the (Kronecker)

outer product vR.' * vR yields the 2 × 2 matrix with (i, j)th element (vR)i (vR)j,

namely [1 2; 2 4].

(18) Matrix functions. A few functions ending in the letter m such as the matrix expo-

nential expm act on matrix arguments and are defined (although not implemented)

through power-series expansions such as

expm( aRC ) = eye( size( aRC ) ) + aRC + aRCˆ2/2!

+ aRCˆ3/3! + ...

The determinant, trace, inverse, logarithm and square root of aRC are similarly

given by det( aRC ), trace( aRC ), inv( aRC ), logm( aRC ) and sqrtm( aRC ),
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10 Octave programming

respectively. The LU decomposition of aRC is expressed as [lRC, uRC] = lu(aRC);.

The eigenvalues, arranged in ascending order, and the corresponding eigenvectors

of a matrix aRC are placed, respectively, in the columns of the matrix mVecRC

and the diagonal elements of mValRC through the call [mVecRC, mValRC] =

eig( aRC );. Simply calling eig( aRC ) returns a vector containing the eigenvalues

in ascending order.

(19) Solving linear equation systems. The quotient of two matrices in Octave written as

mRC / nRC denotes mRC * inv( nRC ), while mRC \ nRC instead represents

inv( mRC ) * nRC. Accordingly, the linear equation system xR * mRC = yR is

solved by xR = yR / mRC, while xC =mRC \ yC if mRC * xC = yC.

(20) Sparse matrices. Operations on matrices with few non-zero elements are accelerated

if the matrices are implemented as sparse matrices. The simplest procedure converts

a full matrix aRC to a sparse matrix by bRCsp = sparse( aRC ) (which is reversed

with aRC = full( bRCsp ) ). Subsequent operations such as * and / are performed

with sparse routines if all operands or arguments are sparse (except for an identity

or zero matrix). spy( mRCsp ) displays the locations of the non-zero elements of

mRCsp while speye( n ) is an n × n sparse identity matrix.

(21) Random-number generation. To compare the different versions of a program that

incorporates a random-number generator, the random sequence should be the same

in all versions. This is accomplished by introducing the statement rand( 'state', 0 )

at the beginning of each program. Uniformly distributed random numbers between

0 and 1 are generated singly with rand or as a multidimensional array with e.g.

rand( m, n ). Typing lookfor rand displays information about functions for other

random distributions.

(22) Saving variables. A variable v is stored in the text Octave file filename through

save filename v and then recovered through load filename. This file can then be

inspected or edited with any text editor. All variables present in the workspace

are simultaneously saved and loaded in through the commands save filename

and load filename. [In MATLAB the save command instead writes to a binary

file filename.mat and will only save a variable v to an ASCII file vdata if the

command save vascii v –ascii is instead employed. The variable is in this case

recovered from the .mat file with load vascii; v = vascii; where only the first

statement is employed if v is employed for the file name in place of vascii.

However, retrieval from MATLAB binary files that store more than one variable

presents difficulties since the original variable names are not stored as in .mat

files.]

(23) String manipulation. A string such as s = 'test' is stored as an array ['t' 'e' 's' 't']

of characters so that s(1) returns t and ['a ', s] yields the new string 'a test'. Inte-

gers and floating-point numbers are translated into strings through the functions

int2str( ) and num2str( ), respectively; the reverse operation is performed by

str2int( ) and str2num( ). An Octave expression, expressed as a string, is sent

to the command processor by writing eval( ); as an example, to display the files

present in the directory, the commands s = 'dir'; eval( s ); can be employed.
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