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Calculus and linear algebra

One does not get far in differential geometry without calculations. This also

applies for that synthetic approach which we present. We develop in this chap-

ter the basic calculus and algebra needed. The fundamental differentiation

process (formation of directional derivatives) here actually becomes part of

the algebra, since the classical use of limit processes is eliminated in favour

of the use of infinitesimal subspaces of the number line R and of the coordi-

nate vector spaces Rn. These infinitesimal spaces are defined in an algebraic,

and ultimately coordinate-free, way, so that they may be defined as subspaces

of arbitrary finite-dimensional vector spaces V . The combinatorial notion of

“pairs of points in V which are k-neighbours” (k = 0,1,2, . . .), written x ∼k y,

is introduced as an aspect of these infinitesimal spaces. The neighbour rela-

tions ∼k are invariant under all, even locally defined, maps. This opens up

consideration of the neighbour relations in general manifolds in Chapter 2.

The content of this chapter has some overlap with the existing textbooks on

SDG (notably with Part I of Kock, 1981/2006) and is, as these, based on the

KL axiom scheme.

1.1 The number line R

The axiomatics and the theory to be presented involve a sufficiently nice cat-

egory E , equipped with a commutative ring object R, the “number line” or

“affine line”; the symbol R is chosen because of its similarity with R, the stan-

dard symbol for the ring of real numbers. The category E is typically a topos

(although for most of the theory, less will do). Thus the axiomatics deals with

a ringed topos (E ,R). The objects of E are called “spaces”, or “sets”; these

words are used as synonyms, as explained in the Appendix. Therefore also

“ring object” is synonymous with “ring”. Also, “map” is synonymous with
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2 Calculus and linear algebra

“smooth map”, equivalently, the phrase “smooth” applies to all maps in E , and

therefore it is void, and will rarely be used.

Unlike R, R is not assumed to be a field, because this would exclude the

existence of the ample supply of nilpotent elements (elements x∈R with xn = 0

for some n) which are basic to the axiomatics presented here. We do, for

simplicity, assume that R has characteristic 0, in the sense that the elements

1+1, 1+1+1, etc. are invertible; equivalently, we assume that R contains the

field Q of rational numbers as a subring. (Part of the theory can be developed

without this assumption, or with the assumption that x+x = 0 implies x = 0; in

fact, as said in the Preface, part of the theory originates in algebraic geometry,

where positive characteristic is taken seriously.) For some arguments, we need

to assume that R is a local ring: “if a sum is invertible, then at least one of the

terms in it is invertible”. In Chapter 8, we shall furthermore assume that R is

formally real, in the sense that if x1 is invertible, then so is ∑n
i=1 x2

i ; or we shall

even assume that R is Pythagorean, in the sense that a square root of such sum

exists. No order relation is assumed on R.

Since R is not a field, and the logic does not admit the rule of excluded mid-

dle, the theory of R-modules is not quite so simple as the classical theory of

vector spaces over a field. Therefore we have to make explicit some points and

notions. A linear map is an R-linear map between R-modules. An R-module V

is called a finite-dimensional vector space if there exists a linear isomorphism

between V and some Rn, in which case we say that V has dimension n. The

phrase (quantifier) “there exists” has to be interpreted according to sheaf se-

mantics; in particular, it suffices that V is locally isomorphic to Rn. If U and V

are finite-dimensional vector spaces, a linear inclusion j : U →V makes U into

a finite-dimensional subspace of V if there exists a linear complement U ′ ⊆V

with U ′ likewise finite dimensional.

An example of a linear subspace (submodule) of a finite-dimensional vector

space, which is not itself a finite-dimensional vector space, is given in Exercise

1.3.4.

A manifold is a space which locally is diffeomorphic to a finite-dimensional

vector space; to explain the phrase “locally”, one needs a notion of open subset.

This notion of “open”, we shall present axiomatically as well (as in algebraic

geometry), see the Appendix. A main requirement is that the set R∗ of invert-

ible elements in R is an open subset.

Note that R∗ is stable under addition or subtraction of nilpotent elements: if

x is nilpotent, say xn+1 = 0, and a ∈ R∗, then a−x ∈ R∗; for, an inverse for it is

given by the geometric series which stops after the nth term, by the nilpotency
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1.2 The basic infinitesimal spaces 3

assumption on x; thus, since xn+1 = 0,

(1− x)−1 = 1+
n

∑
k=1

xn
.

This relationship between “invertible” and “nilpotent”, together with the sta-

bility properties of the property of being open, together imply that open subsets

M of Rn are “formally open”, meaning that if a ∈ M and x ∈ Rn is “infinitesi-

mal” in the sense described in the next section, then a+ x ∈ M. In most of the

theory to be developed, the notion of open could be replaced by the weaker no-

tion of formally open. In a few places, we write “(formally) open”, to remind

the reader of this fact. But we do not want to overload the exposition with too

much esoteric terminology.

1.2 The basic infinitesimal spaces

We begin by describing some equationally defined subsets of R, of Rn (= the

vector space of n-dimensional coordinate vectors), and of Rm·n (= the vector

space of m×n-matrices over R). The descriptions are then given in coordinate-

free form, so that we can generalize them into descriptions of analogous sub-

objects, with Rn replaced by any finite-dimensional vector space V .

The fundamental one of these subsets is D ⊆ R,

D := {x ∈ R | x2 = 0}.

More generally, for n a positive integer, we let D(n) ⊆ Rn be the following set

of n-dimensional coordinate vectors x = (x1, . . . ,xn) ∈ Rn:

D(n) := {(x1, . . . ,xn) ∈ Rn | x jx j′
= 0 for all j, j′ = 1, . . . ,n},

in particular (by taking j = j′), x2
j = 0, so that D(n) ⊆ Dn ⊆ Rn. The inclusion

D(n) ⊆ Dn will usually be a proper inclusion, except for n = 1. Note also that

D = D(1). Note that if x is in D(n), then so is λ ·x for any λ ∈ R, in particular,

−x is in D(n) if x is. In general, D(n) is not stable under addition. For instance,

for d1 and d2 in D, d1 +d2 ∈ D iff (d1,d2) ∈ D(2) iff d1 ·d2 = 0.

The objects D and D(n) may be called first-order infinitesimal objects. We

also have kth-order infinitesimal objects: if k is any positive integer, Dk ⊆ R is

Dk := {x ∈ R | xk+1 = 0}.

More generally,

Dk(n) := {(x1, . . . ,xn) ∈ Rn | any product of k +1 of the xis is 0}.

Note D = D1, D(n) = D1(n); and that Dk(n) ⊆ Dl(n) if k ≤ l.
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4 Calculus and linear algebra

The notation for the spaces D, D(n), Dk, and Dk(n) is the standard one of

SDG. The following space D̃(m,n) is less standard, and was first described in

Kock (1981/2006, §I.16 and §I.18), with the aim of constructing a combinato-

rial notion of differential m-form; see Chapter 3.†

The subset D̃(m,n) ⊆ Rm·n is the following set of m × n matrices

[xi j] (m,n ≥ 2):

D̃(m,n) := {[xi j] ∈Rm·n | xi jxi′ j′
+ x

i′ j
x

i j′
= 0

for all i, i′ = 1, . . . ,m and j, j′ = 1, . . . ,n}.

We note that the equations defining D̃(m,n) are row–column symmetric; equiv-

alently, the transpose of a matrix in D̃(m,n) belongs to D̃(n,m). Also, clearly

any p× q submatrix of a matrix in D̃(m,n) belongs to D̃(p,q) (p and q ≥ 2).

For, if the defining equations

xi jxi′ j′
+ x

i′ j
x

i j′
= 0 (1.2.1)

hold for all indices i, i′, j, j′, they hold for any subset of them. And since each

of the equations in (1.2.1) only involve (at most) four indices i, i′, j, j′, we see

that for an m× n matrix to belong to D̃(m,n), it suffices that all of its 2× 2

submatrices belong to D̃(2,2).

If [xi j] ∈ D̃(m,n), we get in particular, by putting i = i′ in the defining equa-

tions (1.2.1), that for any j, j′ = 1, . . . ,n

xi jxi j′
+ xi jxi j′

= 0.

Since 2 is assumed cancellable in R, we deduce from this equation that xi jxi j′
=

0, which is to say that the ith row of [xi j] belongs to D(n). Similarly, the jth

column belongs to D(m).

An m×n matrix is in D̃(m,n) iff all its 2×n submatrices are in D̃(2,n). We

have a useful characterization of such 2×n matrices:

Proposition 1.2.1 Consider a 2× n matrix as an element (x,y) of Rn ×Rn.

Then (x,y) ∈ D̃(2,n) iff x ∈ D(n), y ∈ D(n) and for any symmetric bilinear

φ : Rn ×Rn → R, φ(x,y) = 0.

Proof. The left-hand sides of the defining equations (1.2.1) with i = 1 and

i′ = 2 generate the vector space of symmetric bilinear maps Rn ×Rn → R, and

for i = i′ = 1, (1.2.1) means that x ∈ D(n), and similarly for i = i′ = 2, (1.2.1)

means that y ∈ D(n).

† The object D̃(m,n) is denoted ΛmD(n) in Kock (1996).
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1.2 The basic infinitesimal spaces 5

In Chapter 8, we shall have occasion to study an infinitesimal space DL(n)⊆

Rn (the “L” is for “Laplace”); for n ≥ 2,

DL(n) := {(x1, . . . ,xn) ∈ Rn | x2
1 = . . . = x2

n and xi · x j = 0 for i 	= j}.

It is easy to see that D1(n) ⊆ DL(n) ⊆ D2(n) (or, see the calculations after the

proof of Proposition 8.3.2). (For n = 1, we put DL(n) := D2(n))

Coordinate-free aspects of Dk(n)

We may characterize Dk(n) ⊆ Rn in a coordinate-free way:

Proposition 1.2.2 Let x ∈ Rn. Then x ∈ Dk(n) if and only if for all k +1-linear

φ : (Rn)k+1 → R, we have φ(x, . . . ,x) = 0. Equivalently, x ∈ Dk(n) if and only

if for all k +1-homogeneous Φ : Rn → R, we have Φ(x) = 0.

Proof. This follows because the monomials of degree k + 1 in n variables

span the vector space of k + 1-linear maps (Rn)k+1 → R; and the Dk(n) is by

definition the common zero set of all these monomials.

In particular, x ∈ D(n) iff for all bilinear φ : Rn ×Rn → R, φ(x,x) = 0.

Because of the proposition, we may define D(V ) and Dk(V ) for any finite-

dimensional vector space (= R-module isomorphic to some Rn):

D(V ) := {v ∈V | φ(v,v) = 0 for any bilinear φ : V ×V → R }, (1.2.2)

and similarly

Dk(V ) := {v ∈V | φ(v,v, . . . ,v) = 0 for any (k +1)-linear φ : V k+1 → R },

(1.2.3)

or equivalently

Dk(V ) = {v ∈V | Φ(v) = 0 for any (k +1)-homogeneous Φ : V → R }.

(For the coordinate-free notion of “homogeneous map”, see Section A.7.) For

V = Rn, we recover the objects already defined, Dk(R
n) = Dk(n).

It is clear from the coordinate-free presentation that if φ : V1 →V2 is a linear

map between finite-dimensional vector spaces, then

φ(Dk(V1)) ⊆ Dk(V2). (1.2.4)

The construction Dk is actually a functor from the category of finite-dimensional

vector spaces to the category of pointed sets (the “point” being 0∈Dk(V )⊆V ).
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6 Calculus and linear algebra

Exercise 1.2.3 Prove that

D(V ) = {v ∈V | φ(v,v) = 0 for any symmetric bilinear φ : V ×V → R }.

(Hint: Use (1.2.2), and decompose φ into a symmetric bilinear map and a skew

bilinear map.)

Proposition 1.2.4 Let U be a finite-dimensional subspace of a finite-

dimensional vector space V . Then D(U) = D(V )∩U.

Proof. The inclusion ⊆ is trivial. For the converse, assume x ∈ U ∩D(V ).

To prove x ∈ D(U), it suffices, by the (coordinate-free version of) Proposition

1.2.2, to prove that φ(x,x) = 0 for all bilinear φ : U ×U → R. But given such

φ , it extends to a bilinear ψ : V ×V → R, since U is a retract of V . Then

ψ(x,x) = 0, since x ∈ D(V ), hence φ(x,x) = 0.

Alternatively, prove the assertion for the special case where i : Rm → Rn is

the canonical inclusion, and argue that the notions in question are invariant

under linear isomorphisms.

A subset S ⊆ D(V ) is called a linear subset (we should really say: a finite-

dimensional linear subset, to be consistent) if it is of the form D(V )∩U for a

finite-dimensional linear subspace U ⊆ V . (Actually, under the axiomatics to

be introduced in the next section, U is uniquely determined by S.) Then by

Proposition 1.2.4, S = D(U).

If f : V1 → V2 is a linear isomorphism between finite-dimensional vector

spaces, and S ⊆ D(V1) is a linear subset, then its image f (S) ⊆ D(V2) is a

linear subset as well.

Proposition 1.2.5 Let V be a finite-dimensional vector space. Then if d ∈

Dk(V ) and δ ∈ Dl(V ), we have d +δ ∈ Dk+l(V ).

Proof. It suffices to consider the case where V = Rn, so d = (d1, . . . ,dn), δ =

(δ1, . . . ,δn). The argument is now a standard binomial expansion: a product

of k + l + 1 of the coordinates of (d1 + δ1, . . . ,dn + δn) expands into a sum

of products of k + l + 1 dis or δ js; in each of the terms in this sum, there is

either at least k + 1 d-factors, or at least l + 1 δ -factors; in either case, we

get 0.

For any finite-dimensional vector space V , we define the kth-order neigh-

bour relation u ∼k v by

u ∼k v iff u− v ∈ Dk(V ).
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1.2 The basic infinitesimal spaces 7

If this holds, we say that u and v are kth-order neighbours. The relation ∼k is a

reflexive relation, since 0∈Dk(V ), and it is symmetric since d ∈Dk(V ) implies

−d ∈ Dk(V ). It is not a transitive relation; but we have, as an immediate

consequence of Proposition 1.2.5:

Proposition 1.2.6 If u ∼k v and v ∼l w then u ∼k+l w.

We are in particular interested in the first-order neighbour relation, u ∼1 v,

which we sometimes therefore abbreviate into u ∼ v; and we use the phrase

u and v are neighbours when u ∼1 v. The (first-order) neighbour relation is

the main actor in the present treatise. The higher-order neighbour relation will

be studied in Section 2.7. In Chapter 8 on metric notions, the second-order

neighbour relation plays a major role.

It follows from (1.2.4) that any linear map between finite-dimensional vector

spaces preserves the property of being kth-order neighbours. (In fact, under the

axiomatics in force from the next section and onwards, any map preserves the

kth-order neighbour relations.)

Remark. There are infinitesimal objects ⊆ Rn which are not coordinate free,

i.e. which cannot be defined for abstract finite-dimensional vector spaces V

instead of Rn; an example is Dn ⊆ Rn, i.e. {(d1, . . . ,dn) ∈ Rn | d2
i = 0 for all i}.

Concretely, this can be seen by observing that Dn is not stable under the action

on Rn of the group GL(n,R) of invertible n× n matrices. The infinitesimal

object DL(n) is not stable under GL(n) either, but it is stable under O(n), the

group of orthogonal matrices, and is studied in Chapter 8 on metric notions.

Aspects of D̃

The equations (1.2.1) defining D̃(m,n) can be reformulated in terms of a cer-

tain bilinear β : Rn ×Rn → Rn2
, where β (x,y) is the n2-tuple whose j j′ entry

is x jy j′
+ x

j′
y j. Then an m×n matrix X (m,n ≥ 2) is in D̃(m,n) if and only if

β (ri,ri′
) = 0 for all i, i′ = 1, . . . ,m (ri denoting the ith row of X).

Note that this description is not row–column symmetric. But it has the ad-

vantage of making the following observation almost trivial:

Proposition 1.2.7 If an m×n matrix X is in D̃(m,n), then the matrix X ′ formed

by adjoining to X a row which is a linear combination of the rows of X, is in

D̃(m+1,n).

(There is, of course, a similar proposition for columns.) Combining this
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8 Calculus and linear algebra

proposition with the observation that the rows of a matrix in D̃(p,n) are in

D(n), we therefore have

Proposition 1.2.8 If X is a matrix in D̃(m,n), then any row in X is in D(n), and

also any linear combination of rows of X is in D(n). Similarly for columns.

We have a “geometric” characterization of matrices in D̃(m,n) in terms

of the (first-order) neighbour relation ∼, namely the equivalence of (1) and

(2) (or of (1) and (3)) in the following

Proposition 1.2.9 Given an m×n matrix X = [xi j] (m,n ≥ 2). Then the follow-

ing five conditions are equivalent: (1) the matrix belongs to D̃(m,n); (2) each

of its rows is a neighbour of 0 ∈ Rn, and any two rows are mutual neighbours;

(3) each of its columns is a neighbour of 0 ∈ Rm, and any two columns are

mutual neighbours. (2’) any linear combination of the rows of X is in D(n);

(3’) any linear combination of the columns of X is in D(m).

Proof. We have already observed (Proposition 1.2.8) that (1) implies (2’),

which in turn trivially implies (2).

Next, assume the condition (2). Let ri denote the ith row of the matrix. Then

the condition (2) in particular says that the ri and r
i′

are neighbours; this means

that for any pair of column indices j, j′,

(ri − r
i′
) j · (ri − r

i′
)

j′
= 0

where for a vector x ∈ Rn, x j denotes its jth coordinate. So

(xi j − x
i′ j

) · (x
i j′
− x

i′ j′
) = 0.

Multiplying out, we get

xi jxi j′
− xi jxi′ j′

− x
i′ j

x
i j′

+ x
i′ j

x
i′ j′

= 0. (1.2.5)

The first term vanishes because ri ∈ D(n), and the last term vanishes because

r
i′
∈ D(n). The two middle terms therefore vanish together, proving that the

defining equations (1.2.1) for D̃(m,n) hold for the matrix; so (1) holds. This

proves equivalence of (1), (2), and (2’). The equivalence of (1), (3), and (3’)

now follows because of the row–column symmetry of the equations defining

D̃(m,n).

Remark 1.2.10 The condition (2) in this proposition was the motivation for the

consideration of D̃(m,n), since the condition says that the m rows of the matrix,

together with the zero row, form an infinitesimal m-simplex, i.e. an m + 1-

tuple of mutual neighbour points, in Rn; see Kock (1981/2006, §I.18; 2000), as
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1.2 The basic infinitesimal spaces 9

well as Chapter 2 below. In the context of SDG, the theory of differential m-

forms, in its combinatorial formulation, has for its basic input quantities such

infinitesimal m-simplices. The notion of infinitesimal m-simplex, and of affine

combinations of the vertices of such, make invariant sense in any manifold N,

due to some of the algebraic stability properties (in the spirit of Proposition

1.2.11 below) which D̃(m,n) enjoys.

The set of matrices D̃(m,n) was defined for m,n ≥ 2 only, but it will make

statements easier if we extend the definition by putting D̃(1,n) = D(n),

D̃(m,1) = D(m), D̃(1,1) = D (here, of course, we identify Rp with the set of

1× p matrices, or p× 1 matrices, as appropriate). By Proposition 1.2.8, the

assertion that p× q submatrices of matrices in D̃(m,n) are in D̃(p,q) retains

its validity, also for p = 1 or q = 1.

Proposition 1.2.11 Let X ∈ D̃(m,n). Then for any p×m matrix P, P ·X ∈

D̃(p,n); and for any n×q matrix Q, X ·Q ∈ D̃(m,q).

Proof. Because of the row–column symmetry of the property of being in

D̃(k, l), it suffices to prove one of the two statements of the proposition, say, the

first. So consider the p×n matrix P ·X . Each of its rows is a linear combina-

tion of rows from X , hence is in D(n), by Proposition 1.2.8. But also any linear

combination of rows in P ·X is in D(n), since a linear combination of linear

combinations of some vectors is again a linear combination of these vectors.

So the result follows from Proposition 1.2.9.

Since the neighbour relation ∼ applies in arbitrary finite-dimensional vector

spaces V , it follows from the proposition that we may define D̃(m,V ) ⊆ V m

as the set of m-tuples v1, . . . ,vm of vectors in V such that vi ∼ v j for all i, j =

1, . . . ,m, and such that vi ∼ 0 for all i = 1, . . . ,m. Linear isomorphisms V1 →

V2 preserve this construction. With this definition, D̃(m,Rn) = D̃(m,n). The

notion of infinitesimal m-simplex in Rn (as in Remark 1.2.10) immediately

carries over to arbitrary finite-dimensional vector spaces.

We leave it to the reader to derive the following coordinate-free corollary of

Proposition 1.2.1:

Proposition 1.2.12 Let V be a finite-dimensional vector space. Let x and y

be elements of V . Then (x,y) ∈ D̃(2,V ) iff x ∈ D(V ), y ∈ D(V ), and for any

symmetric bilinear φ : V ×V → R, φ(x,y) = 0.

Let V be an R-module. Then there is a bilinear

Rmn ×V n →V m
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10 Calculus and linear algebra

essentially given by matrix multiplication (viewing elements of Rmn as m× n

matrices): the ith entry in d · v is ∑ j di j · v j. For instance, a linear combina-

tion ∑n
j=1 t j · v j is the matrix product t · v, where t is the 1× n (row) matrix

(t1, . . . ,tn).

For any vector space (R-module) V , and any m× n matrix t, we therefore

have a linear map V n → V m given by matrix multiplication v �→ t · v, where

v ∈V n.

Proposition 1.2.12 has the following corollary:

Proposition 1.2.13 Let (v1, . . . ,vk) ∈ D̃(k,V ), i.e. the vis are mutual neigh-

bours, and neighbours of 0. Then all linear combinations of these vectors are

also mutual neighbours and are neighbours of 0.

Proposition 1.2.11 has the following coordinate-free formulation:

Proposition 1.2.14 If t is an m×n matrix in D̃(m,n), then t · v ∈ D̃(m,V ), for

any v ∈V n.

It is clear that in a finite-dimensional vector space V , a k +1-tuple of points

(x0,x1, . . . ,xk) in V are mutual neighbours iff

(x1 − x0, . . . ,xk − x0) ∈ D̃(k,V ).

An affine combination is a linear combination where the sum of the coeffi-

cients is 1. Since translations (x �→ x− x0 for fixed x0) preserve affine combi-

nations, and also preserve the property of being neighbours, we immediately

get from Proposition 1.2.13:

Proposition 1.2.15 Let x0,x1, . . . ,xk be mutual neighbours in V . Then all affine

combinations of them are also mutual neighbours.

We leave to the reader to prove, in analogy with the proof of Proposition

1.2.4:

Proposition 1.2.16 Let U be a finite-dimensional subspace of a finite-dimensional

vector space V . Then D̃(k,U) = D̃(k,V )∩ (U × . . .×U).

Exercise 1.2.17 Prove that D(V ×V ) ⊆ D̃(2,V ). (The “KL” axiomatics intro-

duced in the next section will imply that the inclusion is a proper inclusion; see

Exercise 1.3.5.) Prove that if V is 1-dimensional, D(V ×V ) = D̃(2,V ).
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