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1 Introduction

1.1 What Is the Boundary Element Method?

The boundary element method (BEM) is a numerical method for solving

boundary-value or initial-value problems formulated by use of boundary inte-

gral equations (BIEs). In some literature, it is also called the boundary inte-

gral equation method. Figure 1.1 shows the relation of the BEM to other

numerical methods commonly applied in engineering, namely the finite differ-

ence method (FDM), finite element method (FEM), element-free (or meshfree)

method (EFM), and boundary node method (BNM). The FDM, FEM, and

EFM can be regarded as domain-based methods that use ordinary differential

equation (ODE) or partial differential equation (PDE) formulations, whereas

the BEM and BNM are regarded as boundary-based methods that use the BIE

formulations. It should be noted that the ODE/PDE formulation and the BIE

formulation for a given problem are equivalent mathematically and represent

the local and global statements of the same problem, respectively. In the BEM,

only the boundaries – that is, surfaces for three-dimensional (3D) problems or

curves for two-dimensional (2D) problems – of a problem domain need to be

discretized. However, the BEM does have similarities to the FEM in that it

does use elements, nodes, and shape functions, but on the boundaries only.

This reduction in dimensions brings about many advantages for the BEM that

are discussed in the following sections and throughout this book.

1.2 Why the Boundary Element Method?

The BEM offers some unique advantages for solving many engineering prob-

lems. The following are the main advantages of the BEM:

� Accuracy: The BEM is a semianalytical method and thus is more accurate,

especially for stress concentration problems such as fracture analysis of

structures.
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Figure 1.1. Relations of commonly used numerical methods for solving engineering
problems.

� Efficient in modeling: The BEM mesh (a collection of the elements used to

discretize a continuum structure) is much easier to generate for 3D prob-

lems or infinite domain problems because of the dimension reduction in

the BIE formulations.
� An independent numerical method: The BEM can be applied along with

the other domain-based methods to verify the solutions to a problem for

which no analytical solution is available.

1.3 A Comparison of the Finite Element Method and

the Boundary Element Method

Table 1.1 gives a comparison of the BEM with the FEM regarding their main

features, as well as advantages and disadvantages. This comparison is by no

Table 1.1. A comparison of the FEM and BEM

FEM BEM

Features
� Derivative-based (local) approach
� Domain mesh: 2D or 3D mesh
� Symmetrical, sparse matrices
� Many commercial packages available

� Integral-based (global) approach
� Boundary mesh: 1D or 2D mesh
� Nonsymmetrical, dense matrices
� Fewer commercial packages available

Advantages
� Solution is fast
� Suitable for general structure analysis;

large mechanical systems
� Nonlinear problems
� Composite materials (macroscale analysis)

� Mesh generation is fast
� Suitable for stress concentration

problems (e.g., fracture mechanics)
� Infinite domain problems
� Composite materials (e.g., microscale

continuum models)
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1.5 Fast Multipole Method 3

means complete, and certainly will change with the new development in either

the FEM or BEM.

1.4 A Brief History of the Boundary Element Method

and Other References

The direct BIE formulations and their modern numerical solutions that use

boundary elements for problems in applied mechanics originated more than

40 years ago during the 1960s. The 2D potential problem was first formulated

in terms of a direct BIE and solved numerically by Jaswon [1], Symm [2], and

Jaswon and Ponter [3]. This work was later extended to the vector case – 2D

elastostatic problem by Rizzo in the early 1960s for his Ph.D. dissertation at

the University of Illinois at Urbana-Champaign, which was later published as

a journal article in 1967 [4]. Following these early works, extensive research

efforts were made in BIE formulations of many problems in applied mechanics

and in the numerical solutions during the 1960s and 1970s [5–20]. The name

boundary element method appeared in the mid-1970s in an attempt to make an

analogy with the FEM [21–23].

Some of the important textbooks and research volumes in the 1980s and

early 1990s, which made significant contributions to the research and develop-

ment of the BIE/BEM, can be found in Refs. [24–28]. A few recent research

volumes with advanced treatment of the topics on BIE/BEM can be found in

Refs. [29–32]. Readers may consult these publications for more detailed dis-

cussions on many of the topics in this book or other topics not covered in this

book regarding the BIE formulations and the related conventional BEM solu-

tion techniques.

1.5 Fast Multipole Method

Although the BEM has enjoyed the reputation of easy meshing in modeling

many problems with complicated geometries, its efficiency in solutions has

been a serious problem for analyzing large-scale models. For example, the

BEM has been limited to solving problems with a few thousand degrees of

freedom (DOFs) on a personal computer (PC) for many years. This is because

the conventional BEM, in general, produces dense and nonsymmetric matri-

ces that, although smaller in size, require O(N 2) operations to compute the

coefficients and another O(N3) operations to solve the system by using direct

solvers (here, N is the number of equations of the linear system or DOFs in

the BEM model).

In the mid-1980s, Rokhlin and Greengard [33–35] pioneered the innova-

tive fast multipole method (FMM) that can be used to accelerate the solutions

of BIE by severalfold to reduce the CPU time in a FMM-accelerated BEM
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to O(N). However, it took almost a decade for the mechanics community to

realize the potential of the FMM for the BEM. Some of the early research on

the fast multipole BEM in applied mechanics can be found in Refs. [36–40],

which show the great promise of the fast multipole BEM for solving large-

scale engineering problems. A comprehensive review of the fast-multipole-

accelerated BIE/BEM and the research work up to 2002 can be found in

Ref. [41].

In this book, we use the FMM to solve the various BEM systems of equa-

tions for potential, elastostatic, Stokes flow, and acoustic wave problems. The

fast multipole BEM represents the future of BEM research and applications.

However, understanding the BIE formulations and the conventional BEM

procedures in solving these BIEs is still very important. Learning the intri-

cacies of the BIE formulations and the conventional BEM while promoting

the fast multipole BEM is emphasized in this book.

1.6 Applications of the Boundary Element Method in Engineering

Today, the BEM has gained a great deal of attention in the field of compu-

tational mechanics, especially with the help of the FMM. The applications

of the BEM are now well beyond the range of classical potential and elastic-

ity theories, extending to many engineering fields, including heat transfer, dif-

fusion and convection, fluid flows, fracture mechanics, geomechanics, plates

and shells, inelastic problems, contact problems, wave propagations (acous-

tic, elastic, and electromagnetic waves), electrostatic problems, design sensi-

tivity and optimizations, and inverse problems. Examples of the fast multipole

BEM applications are given in the following chapters, in which applications of

the fast multipole BEM for solving large-scale problems in many engineering

fields are presented.

As an example, we use an engine-block model (Figure 1.2) to conduct

a thermal analysis and compare the results obtained with the FEM and the

BEM. With the FEM (using ANSYS R©), more than 363,000 volume elements

are applied with DOFs above 1.5 million. With the BEM (a fast multipole

BEM code discussed in Chapter 3), only about 42,000 constant surface ele-

ments (triangular constant elements) are applied with the same number of

DOFs. Furthermore, meshing the volume is considerably more difficult and

takes longer human time than meshing the surfaces of the engine block. On a

desktop PC, the FEM solution took 50 min to finish, whereas the BEM solu-

tion took only about 16 min. The differences in the computed results for the

temperature fields by the FEM and the BEM (Figure 1.3) are less than 1%.

Considering the human time saved during the discretization stage, the advan-

tage of the BEM in modeling 3D problems with complicated geometries is

most evident.
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Figure 1.2. An engine block discretized using finite elements and boundary elements:
(a) FEM (363,000 volume elements/1.5 million DOFs), (b) BEM (42,000 surface
elements/DOFs).

1.7 An Example – Bending of a Beam

We first study a simple beam-bending problem (Figure 1.4) to see that the

boundary approach is a valid and equivalent approach to solving engineering

problems that are usually written in ODEs or PDEs.

We have the following governing equations based on simple beam

theory:

EI
d 2v

dx 2
= M(x), (1.1)

dM

dx
= Q(x), (1.2)

dQ

dx
= q(x), (1.3)

 (b)(a)
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Figure 1.3. Temperature field computed using finite elements and boundary elements:
(a) FEM (CPU time = 50 min), (b) BEM (CPU time = 16 min).

www.cambridge.org/9780521116596
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-11659-6 — Fast Multipole Boundary Element Method
Yijun Liu
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Introduction

q(x)

L

y

ML

QL

x
M0

Q0

Figure 1.4. A simple beam-bending problem.

for x ∈ (0, L), where v(x) is the deflection of the beam, EI is the bending stiff-

ness, M(x) is the bending moment, Q(x) is the shear force, and q(x) is the

distributed load in the lateral direction (Figure 1.4). Combining Eqs. (1.1)–

(1.3), we also have:

EI
d 4v

dx 4
= q(x). (1.4)

To solve the beam problem, we need to solve either Eq. (1.1) if the bend-

ing moment M(x) is known or Eq. (1.4) if M(x) is not readily available, under

given boundary conditions at x = 0 and x = L. In the following discussion, it

is shown that solving ODE (1.1) is equivalent to solving an integral equation

formulation that involves boundary values only.

We first consider the so-called fundamental solution for Eq. (1.1), or the

Green’s function for an infinitely long beam (Figure 1.5). Consider the load

case in which a unit concentrated force P = 1 is applied at point x0 of the

beam.

The bending moment M∗(x0, x) in the beam at x is governed by the fol-

lowing equation [see Eqs. (1.2) and (1.3)]:

d2 M∗(x0, x)

dx2
= δ(x0, x), ∀x, x0 ∈ (−∞,+∞), (1.5)

where δ(x0, x) is the Dirac δ function used to represent the distributed load

q(x) in this case. An engineering “definition” of the Dirac δ function δ(x0, x)

can be given as:

δ(x0, x) =

{

0, if x �= x0

∞, if x = x0

. (1.6)

An important property of the Dirac δ function δ(x0, x), which is a generalized

function, is the sifting property [42] given by:
∫ +∞

−∞

f (x)δ(x0, x)dx = f (x0) (1.7)

for any continuous function f (x).

x0 

y 

x x0
r

P = 1
Figure 1.5. An infinitely long beam with
a point force.
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1.7 An Example – Bending of a Beam 7

Solving Eq. (1.5) by using, for example, Fourier transformation (see Prob-

lem 1.1) or simply from the physical argument, we can show that the bending

moment at x that is due to the unit point force at x0 is:

M∗(x0, x) =
1

2
r, (1.8)

where r = |x0 − x| is the distance between the source point x0 and field point x.

This is the fundamental solution for Eq. (1.1) and is the first ingredient needed

in our boundary formulation. The second ingredient is the following general-

ized Green’s identity:

∫ L

0

(

u
d2v

dx2
−

d2u

dx2
v

)

dx =

(

u
dv

dx
−

du

dx
v

)
∣

∣

∣

∣

x=L

x=0

(1.9)

for any two functions u(x) and v(x) with sufficient smoothness (continuity of

the derivatives). The significance of this identity is that it can transform a one-

dimensional (1D) domain integral to evaluations of the functions at the bound-

aries.

Now if we select u to be the fundamental solution M∗(x0, x) satisfying

Eq. (1.5) and v to be the deflection of the beam satisfying Eq. (1.1), we have

the following result from Eq. (1.9):

∫ L

0

(

M∗ d2v

dx2
−

d2 M∗

dx2
v

)

dx =

(

M∗ dv

dx
−

dM∗

dx
v

)
∣

∣

∣

∣

x=L

x=0

.

Applying Eqs. (1.1) and (1.5), we obtain

v(x0) =

∫ L

0

(

M∗ M

EI

)

dx −

(

M∗ dv

dx
−

dM∗

dx
v

)
∣

∣

∣

∣

x=L

x=0

or

v(x0) =

∫ L

0

M∗(x0, x)
M(x)

EI
dx + Q∗(x0, L)vL − Q∗(x0, 0)v0

− M∗(x0, L)θL + M∗(x0, 0)θ0, ∀x0 ∈ (0, L), (1.10)

in which v0, vL, θ0, and θL are the deflection and rotation of the beam at the

left and right ends, respectively, and Q∗ is the shear force in the fundamental

solution corresponding to M∗ in (1.8); that is:

Q∗(x0, x) =
dM∗(x0, x)

dx
=

⎧

⎪

⎨

⎪

⎩

1

2
, for x > x0

−
1

2
, for x < x0

. (1.11)

Equation (1.10) is an expression of the solution for deflection at any point

inside the beam. Once the deflections and rotations at the two ends (bound-

aries) of the beam are obtained, we can use Eq. (1.10) to evaluate the deflec-

tion of the beam at any point x0.
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x

F

L

 y

EI Figure 1.6. A cantilever beam.

To derive a boundary formulation, we first let x0 tend to 0 in Eq. (1.10) to

have:

v0 =

∫ L

0

x

2

M(x)

EI
dx +

1

2
vL +

1

2
v0 −

L

2
θL,

and then we let x0 tend to L in Eq. (1.10) to have:

vL =

∫ L

0

L− x

2

M(x)

EI
dx +

1

2
vL+

1

2
v0 +

L

2
θ0.

Writing the two equations in a matrix form, we obtain the following boundary

formulation:

1

2

[

1 −1

−1 1

] {

v0

vL

}

+
L

2

[

0 1

−1 0

] {

θ0

θL

}

=
1

2EI

∫ L

0

{

x

L− x

}

M(x)dx.

(1.12)

This boundary formulation is equivalent to the ODE given in (1.1). If

the bending moment is known, this equation can be applied to solve for the

unknown boundary variables v0, vL, θ0, and θL first.

As an example, we consider the cantilever beam in Figure 1.6 by using

our derived boundary formulation. In this case, the bending moment is found

to be:

M(x) = F(L− x),

and the boundary conditions are:

v0 = 0, θ0 = 0.

Thus, boundary equation (1.12) yields:

1

2

[

−1 L

1 0

] {

vL

θL

}

=
F L3

12EI

{

1

2

}

.

Solving this equation, we obtain the deflection and rotation of the beam at the

right end:

{

vL

θL

}

=
F L3

6EI

{

2

3/L

}

.
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1.8 Some Mathematical Preliminaries 9

Substituting these results into expression (1.10), we also have:

v(x0) =

∫ L

0

|x − x0|

2

F(L− x)

EI
dx +

1

2

(

F L3

3EI

)

−
L− x0

2

(

F L2

2EI

)

=
F

6EI
(3L− x0)x2

0 , ∀x0 ∈ (0, L);

which agrees with the result from solving Eq. (1.1) directly. Thus, boundary

formulation (1.12) is equivalent to the ODE formulation in Eq. (1.1).

Note that the simple beam example is used here to illustrate the proce-

dures in transforming an ODE or PDE statement of a problem to a boundary

formulation and the ingredients needed in this process. It does not mean that

we will use this boundary formulation to solve beam-bending problems. In

fact, there are no advantages in solving 1D problems by using the boundary

formulations or the BEM in general.

The two major ingredients in the boundary formulation are the funda-

mental solution and the generalized Green’s identity. These two topics are

expanded in following sections.

1.8 Some Mathematical Preliminaries

Some mathematical results needed in later chapters of this book are reviewed

in this section. For more detailed coverage of these topics, the reader should

consult other books on the related topics. Many of the topics are covered in

Fung’s outstanding textbook [43].

1.8.1 Integral Equations

An integral equation is an equation that contains unknown functions under the

integral sign. For example, the following equations are two integral equations

in one dimension:
∫ b

a

K(x, y)φ(y)dy = f (x), (1.13)

φ(x) =

∫ b

a

K(x, y)φ(y)dy + g(x), (1.14)

in which φ is an unknown function, K(x, y) is a known kernel function, and f

and g are two given functions. Equation (1.13) is a linear Fredholm equation

of the first kind, whereas Eq. (1.14) is a linear Fredholm equation of the second

kind. The kernel function K(x, y) determines the characteristics of the integral

equation. For example, if:

K(x, y) =
1

|x − y|
,
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then the integrals in (1.13) and (1.14) are singular when x ∈ (a, b), and Eqs.

(1.13) and (1.14) are called singular integral equations.

1.8.2 Indicial Notation

Indicial notation is extremely useful in deriving the equations in BIE for-

mulations. In indicial notation, coordinates x, y, and z are replaced with

x1, x2, and x3, respectively, for 3D problems, or simply as xi , for i = 1, 2 (for

two dimensions) or 1, 2, 3 (for three dimensions). For example, the equation

of a plane in 3D space, ax + by + cz = p, can be written as:

3
∑

i=1

ai xi = p,

if we set a1 = a, a2 = b, and a3 = c. The preceding expression can be further

simplified if we apply Einstein’s summation convention, which says that sum-

mation is implied if an index is repeated twice in the same term. With this

convention, the preceding equation for the plane in 3D space can be written

simply as:

ai xi = p,

where i is called a dummy index and can be changed to other symbols. For

example, the dot product of two vectors −→a and
−→
b can be expressed as:

−→a ·
−→
b = ai bi = akbk,

in indicial notation. A linear system of equations Ax = b can be written as:

ai j x j = bi ,

with indices i and j running from 1, 2, . . . , n (number of the equations).

Differentiations of a function f (x, y, z) = f (xi ) can be expressed as:

∂ f

∂x
,

∂ f

∂y
,

∂ f

∂z
⇒

∂ f

∂xi

≡ f,i ,

df =
∂ f

∂x1
dx1 +

∂ f

∂x2
dx2 +

∂ f

∂x3
dx3 = f,i dxi ,

∇2 f =
∂2 f

∂x2
1

+
∂2 f

∂x2
2

+
∂2 f

∂x2
3

= f,i i . (1.15)

The Kronecker delta δi j is defined by:

δi j =

{

1, if i = j

0, if i �= j
, (1.16)
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