Scientific productivity
Scientific productivity

The effectiveness of research groups in six countries

Frank M. Andrews, editor
Institute for Social Research,
University of Michigan

Contributing Authors:

George Aichholzer Salomea Kowalewska
Frank M. Andrews Edmond Legros
Joseph Bonnariage Roland Mittermeir
Gerald A. Cole Rikard Stankiewicz
Csaba Fajszi Veronica Stolte-Heiskanen
Arpad Halász Lajos Szántó
Agnes Haraszthy Michel Vessière
Y. de Hemptinne Nicole Visart
Peter Hunya George Waller
Karin D. Knorr

Cambridge University Press
Cambridge
London New York Melbourne

Unesco
Paris
Contents

List of exhibits ... page xvii
Foreword by Unesco .. xxv
Preface
 The nature of this book xxix
 An overview of the chapters xxx
 Authors’ addresses xxxiii
 Acknowledgments .. xxxiv

Part 1: Introduction

1 The International Comparative Study on the Organization and Performance of Research Units: an overview
 Y. de Hemptinne and Frank M. Andrews 3
 1 Research on research and development 3
 2 Some distinctive features of the International Study 5
 3 Theoretical and practical foundations of the study 7
 4 Some general findings from the study 9
 5 Possible misinterpretations 11
 6 Concluding comments 12
 References 14
 Notes 15

2 The International Study: its data sources and measurement procedures
 Frank M. Andrews 17
 1 Introduction 17
 2 Nature and sources of the data 18
 The six countries 18
 The two levels: research units and respondents 18
 Criteria for identifying research units 19
vi Contents

The five types of respondents 20
Unit heads 21
Staff scientists 21
Technical support persons 22
Research administrator data 22
External evaluators 22

3 Sampling of research units and data-collection procedures 23
Selection of research units 23
Definition of subpopulations 23
Selection of subpopulations 24
Sampling of research units 25
What the research units represent 25
Relationships among Country, Type of institution, and Scientific field 26
Data collection and processing 28

4 Assessment of unit types and of unit performance 30
A typology of research units 30
Measurement of research-unit performance 32
Basic considerations 32
Composite output measures 36
Composite measures of rated effectiveness 38
Comments on the performance measures 40
Adjustment of performance measures for Type of unit 43
Interrelationships among performance measures 45

5 Summary 47
References 49
Notes 50

Part 2: Organizational factors and scientific performance

3 Individual publication productivity as a social position effect in academic and industrial research units 55
Karin D. Knorr, Roland Mittermeir, Georg Aichholzer, and Georg Waller 55
1 Productivity and stratification in science 55
2 Data 58
3 Measurement of productivity 59
4 Age, professional experience, and productivity 60
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Age as a proxy for position in the research laboratory</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>Age, task structure, and productivity</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>A social-position model of publication productivity</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>Control for a scientist's position</td>
<td>77</td>
</tr>
<tr>
<td>9</td>
<td>Technological scientists in industrial research units</td>
<td>77</td>
</tr>
<tr>
<td>10</td>
<td>Group productivity and its correlates</td>
<td>79</td>
</tr>
<tr>
<td>11</td>
<td>Discussion</td>
<td>87</td>
</tr>
<tr>
<td>12</td>
<td>Summary</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td>91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Leadership and group performance: a positive relationship in academic research units</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Karin D. Knorr, Roland Mittermeir, Georg Aichholzer, and Georg Waller</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Previous research</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>The leadership role in academic research units</td>
<td>97</td>
</tr>
<tr>
<td>3</td>
<td>Data</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>Measures employed</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>Perception of the supervisor and what it relates to</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>Perception of the supervisor and organizational climate</td>
<td>101</td>
</tr>
<tr>
<td>7</td>
<td>Supervisory perception, group climate, and performance</td>
<td>103</td>
</tr>
<tr>
<td>8</td>
<td>A model including measurement error</td>
<td>105</td>
</tr>
<tr>
<td>9</td>
<td>Discussion</td>
<td>111</td>
</tr>
<tr>
<td>10</td>
<td>Summary</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Annex</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td>117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Externally determined resources and the effectiveness of research units</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Veronica Stolte-Heiskanen</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Organization of the chapter</td>
<td>122</td>
</tr>
<tr>
<td>2</td>
<td>Available resources and their subjective perceptions: the notion of congruency</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Measurement of objective and subjective resources</td>
<td>124</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Congruency patterns in different types of research units</td>
<td>130</td>
</tr>
<tr>
<td>3.1</td>
<td>Congruency patterns of material resources</td>
<td>130</td>
</tr>
<tr>
<td>3.2</td>
<td>Congruency patterns of human resources</td>
<td>131</td>
</tr>
<tr>
<td>3.3</td>
<td>Congruency patterns of information resources</td>
<td>132</td>
</tr>
<tr>
<td>3.4</td>
<td>General conclusions concerning variations in congruency</td>
<td>134</td>
</tr>
<tr>
<td>4</td>
<td>Resources, satisfaction, and the effectiveness of research units</td>
<td>137</td>
</tr>
<tr>
<td>4.1</td>
<td>Objective resources, subjective satisfaction, and effectiveness</td>
<td>137</td>
</tr>
<tr>
<td>4.2</td>
<td>Patterns of congruency and effectiveness</td>
<td>138</td>
</tr>
<tr>
<td>4.3</td>
<td>Comment</td>
<td>140</td>
</tr>
<tr>
<td>4.4</td>
<td>Alternative measures of resources and effectiveness</td>
<td>143</td>
</tr>
<tr>
<td>4.5</td>
<td>Comments</td>
<td>146</td>
</tr>
<tr>
<td>5</td>
<td>Summary and conclusions</td>
<td>147</td>
</tr>
<tr>
<td>5.1</td>
<td>References</td>
<td>151</td>
</tr>
<tr>
<td>5.2</td>
<td>Notes</td>
<td>151</td>
</tr>
<tr>
<td>6</td>
<td>Some problems of research planning: data from Hungary compared to other Round 1 countries</td>
<td>155</td>
</tr>
<tr>
<td>6.1</td>
<td>Agnes Haraszthy and Lajos Szántó</td>
<td>155</td>
</tr>
<tr>
<td>6.2</td>
<td>Introduction</td>
<td>155</td>
</tr>
<tr>
<td>6.3</td>
<td>Analysis results</td>
<td>157</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Planning and organization of research-unit activities</td>
<td>157</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Research themes and projects</td>
<td>158</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Projects</td>
<td>161</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Methods used in research work</td>
<td>165</td>
</tr>
<tr>
<td>6.4</td>
<td>Conclusion</td>
<td>167</td>
</tr>
<tr>
<td>6.4.1</td>
<td>References</td>
<td>168</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Notes</td>
<td>168</td>
</tr>
<tr>
<td>7</td>
<td>Patterns of influence and the performance of research units</td>
<td>169</td>
</tr>
<tr>
<td>7.1</td>
<td>Salomea Kowalewska</td>
<td>169</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Introduction</td>
<td>169</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Organization of the chapter</td>
<td>170</td>
</tr>
<tr>
<td>7.2</td>
<td>Structure and nature of the data</td>
<td>171</td>
</tr>
</tbody>
</table>
Contents

- Source of data 171
- The control graph 171
- Some cautions 172
- Interrelationships among the influence measures 173
- Construction of influence indices 174
 - Indices tapping amount of influence 175
 - Indices tapping distribution of influence 175
 - Indices tapping differences in viewpoint 176
- Major hypotheses 176
- Results 177
 - Results on the amount of influence 177
 - Overview 177
 - Basic results 177
 - Refinements 180
 - Comments 181
 - Implications 181
 - Results on the distribution of influence 182
 - Distribution between unit head and other scientists 182
 - Distribution between the unit and organization leaders 182
 - Results on differences in viewpoint 184
- Summary, implications, comments 185
- References 187
- Notes 188
- The size and age of Swedish academic research groups and their scientific performance 191
 - Introduction 191
 - Some earlier investigations 192
 - The choice of data and approach 195
 - The sample 196
 - Hypothesis: the effects of group size 197
 - Hypothesis: the effects of group age 199
 - An outline of the analysis 199
 - Definitions of the variables 199
 - Results 200
 - The overall relationships 200
 - The stability and strength of the relationships 204
 - The form of the relationships 211
 - Conclusions and discussion 218
 - References 220
 - Notes 221
Contents

9 Communication between and within research units

Nicole Visart

Framework, limitations, and purposes of the chapter

1 Background information

The sample

The measures

Performance measures (communication as “signal”)

Communication as a channel

Perceptual measures (rated data)

Countable measures (discrete data)

Relationships among channel communication measures

Mean levels of the channel communication measures

Contextual measures

Perceptual measures (rated data)

Countable measures (discrete data)

Mean levels of the contextual measures

2 Relationships of contextual measures to channel communication

Perceptual dimensions of channel communication

Countable dimensions of channel communication

3 Relationships of channel communication to research-unit performance (signal communication)

4 Multivariate relationships of channel communication to research-unit performance (signal communication)

5 Impacts of some contextual dimensions on relationships between channel communication and research-unit performance (signal communication)

6 Overall scheme of relationships among channel communication, contextual dimensions, and performance

7 Discussion

8 Conclusions for action

Reference

Notes
Contents

10 Motivation, diversity, and the performance of research units
 Frank M. Andrews

 1 Introduction 253
 2 Motivation and performance
 Some past research on motivation and scientific performance 255
 Measurement of strength of motivation 257
 Levels of motivation in different types of respondents and units
 Types of respondents and motivation levels 257
 Types of units and motivation levels 259
 Comments 259
 Strength of motivation as a characteristic of the research unit 259
 Relationships of motivation strength to research-unit performance 261
 Further checks on the motivation–performance relationship 265
 Discussion and conclusions on motivation and performance 267

3 Diversity and performance
 Measurement of diversity within research units
 Comment 271
 Interrelationships among diversity measures 274
 Relationships between diversity and performance
 Basic results 276
 Supporting analyses 276
 Combinations of diversity measures 281
 Discussion and conclusions on diversity and performance 282

4 Motivation, diversity, and performance 283

5 Summary 284

References 286

Notes 287
xii Contents

Part 3: Methodological reports

11 Ratings of research-unit performance

Joseph Bonmariage, Edmond Legros, and Michel Vessière

1 Introduction
 Motivations for the chapter
 Organization of the chapter
 Presentation of the rated-performance measures

2 Exploring the meaning of the rated-effectiveness factor scores
 Objective and subjective measures
 Significance of the rated-effectiveness dimensions
 General R & D effectiveness as assessed by staff scientists
 General R & D effectiveness as assessed by the unit head
 Recognition
 Training effectiveness
 Applications effectiveness
 Social effectiveness
 Administrative effectiveness
 Comments
 Overall appraisal of the rated-performance measures

3 Rated-effectiveness scores: sensitivity to context

4 Stability of relationships between rated effectiveness and other dimensions

5 Summary and conclusions

References
Notes

12 The analysis strategy of the Hungarian Research Team and some results on R & D facilities

Peter Hunya, Arpad Halász, and Csaba Fajzsi

1 Introduction

2 Analysis
 Examination of the variables
 Conceptual survey of the variables
 Univariate and bivariate statistical analyses
 Study of the control variables
Cambridge University Press
978-0-521-11570-4 - Scientific Productivity: The Effectiveness of Research Groups in Six Countries
Edited by Frank M. Andrews
Frontmatter

More information

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation of a refined discipline code</td>
<td>335</td>
</tr>
<tr>
<td>Structural analysis and construction of representative measures</td>
<td>336</td>
</tr>
<tr>
<td>Conceptual grouping of the variables</td>
<td>336</td>
</tr>
<tr>
<td>Empirical analysis</td>
<td>336</td>
</tr>
<tr>
<td>Empirical analysis on conceptual clusters</td>
<td>337</td>
</tr>
<tr>
<td>Construction of representative measures</td>
<td>338</td>
</tr>
<tr>
<td>Overall investigation of the representative measures</td>
<td>340</td>
</tr>
<tr>
<td>Control variables and representative measures</td>
<td>341</td>
</tr>
<tr>
<td>Effects of Country, Field, and Type of organization</td>
<td>341</td>
</tr>
<tr>
<td>Control variables and residualized representative measures</td>
<td>342</td>
</tr>
<tr>
<td>Structure of the residualized representative measures</td>
<td>343</td>
</tr>
<tr>
<td>Multivariate predictive analysis</td>
<td>344</td>
</tr>
<tr>
<td>Respondent level analysis</td>
<td>344</td>
</tr>
<tr>
<td>Unit-level analysis</td>
<td>344</td>
</tr>
<tr>
<td>Countable output and rated performance</td>
<td>345</td>
</tr>
<tr>
<td>Facilities and countable output</td>
<td>345</td>
</tr>
<tr>
<td>Country-level analysis</td>
<td>346</td>
</tr>
<tr>
<td>A ranking procedure</td>
<td>346</td>
</tr>
<tr>
<td>Relations among country rankings based on various composite scores</td>
<td>347</td>
</tr>
<tr>
<td>3 Conclusion</td>
<td>348</td>
</tr>
<tr>
<td>Annex</td>
<td>350</td>
</tr>
<tr>
<td>References</td>
<td>350</td>
</tr>
<tr>
<td>Notes</td>
<td>352</td>
</tr>
</tbody>
</table>

13 Classifying research units by patterns of performance and influence: a typology of the Round 1 data

Gerald A. Cole

1 Introduction 353

2 Grouping research units according to scientific field or organizational setting: theoretical considerations and previous investigations 355
 Unity in science: the null hypothesis 356
 Lines of cleavage: the scientific specialty 357
 Interpreting data across scientific fields 358
Contents

Research activities and organizational settings 360
 Summary regarding organizational settings 366

3 Measurement 367
 Classification of research units by Scientific field 367
 Classification of research units by Type of organization 368
 A cross-classification of Scientific field and Type of organization 369
 Indicators of research-unit performance and patterns of influence 370
 Research orientations: the rated-effectiveness measures 372
 Research products: the output items 372
 Patterns of influence: choice of research themes and organization of the work 373

4 Clustering the research units: methods and results 374
 A preliminary check: variations by Pattern-variable categories 374
 Analysis methods 377
 Results of the clustering analysis 379
 Clustering by research orientation 380
 Clustering by research outputs 382
 Clustering by patterns of influence 383
 Defining a Typology of research units 386
 Using the Typology as a statistical control variable 387
 The Typology, Pattern, and Country variables 387
 Alternate versions of the Typology 388

5 A summary of profiles of research orientations, output, and influence for the five Typology categories 389
 Cautionary note 392

6 Summary and conclusions 393
 Annex: verification of the cluster analysis results 394
 References 396
 Notes 400
Contents

14 Estimating the construct validity and correlated error components of the rated-effectiveness measures
 Frank M. Andrews

1 Introduction 405
2 Methodological development 406
3 The model 407
4 Analysis results 410
 Goodness of fit to the data 410
 Estimated validity and correlated error effects 411
 Estimated validity and error composition of composite scores 413
 Interrelationships among the aspects of performance 415
5 Discussion 417
 Annex: a general structural model for the relationship between two measures 418
 References 420
 Notes 421

Appendix: questionnaire contents 423
 The RU questionnaire 425
 The SA questionnaire 438
 The SB questionnaire 464
 The TS questionnaire 468
Exhibits

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Distribution of the Round 1 research units by Country, by Type of organization, and by Scientific field</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of Round 1 research units by Typology and Country</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Sources of original information about research-unit performance</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Relationships among performance measures</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Mean publication productivity by chronological age for scientists in academic natural and technological sciences and in industrial units</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Mean publication productivity by professional age for scientists in academic natural and technological sciences and in industrial units</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Mean percentage of time in research by professional experience for scientists in academic natural and technological science units and in industrial units</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Pearson rs between age/experience and publication productivity for different subgroups of academic scientists</td>
<td>65</td>
</tr>
<tr>
<td>3.5</td>
<td>Mean publication productivity for different manpower resources (scientists and engineers) for supervisory scientists in academic natural and technological science units and in industrial settings</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>Mean publication productivity for different manpower resources (technical and service staff) for supervisory scientists in academic natural and technological science units and in industrial settings</td>
<td>67</td>
</tr>
<tr>
<td>3.7</td>
<td>Mean publication productivity for different time involvements in research for scientists in academic natural science units and in industrial technological science units</td>
<td>68</td>
</tr>
<tr>
<td>3.8</td>
<td>Mean publication productivity for different time</td>
<td></td>
</tr>
</tbody>
</table>
xviii Exhibits

involvements in research for unit heads and staff scientists in academic natural science settings

3.9 Pearson rs between various dimensions of the research task structure of a scientist, publication productivity, and professional experience, for scientists in academic settings

3.10 Lisrel model of individual publication productivity for scientists in academic natural science settings

3.11 Lisrel model of individual publication productivity for technological scientists in industry

3.12 Lisrel model of individual publication productivity for staff scientists (i.e., excluding unit heads) in academic natural science settings

3.13 Lisrel model of individual publication productivity for supervisory scientists (unit heads) in academic natural science settings

3.14 Lisrel model of individual publication productivity including choice of research themes, for technological scientists in industry

3.15 Pearson rs between publication productivity scores of individual scientists of a unit and group productivity scores of the unit for different measures of productivity

3.16 Predictive power of several variables in explaining group publication productivity

3.17 Predictive power of several variables in explaining per capita group publication productivity

3.18 Raw and adjusted means of per capita group productivity (number of articles) by group size in natural and technological sciences

4.1 Multiple classification analysis of perceived supervisor’s quality in academic natural and technological science units

4.2 Perceived supervisory quality and mean group climate in academic natural and technological science units

4.3 Multiple classification analysis of group climate in academic natural and technological science units

4.4 Group climate and mean R & D effectiveness in academic natural and technological science units

4.5 Multiple classification analysis of R & D effectiveness in academic natural and technological science units

4.6 Presumed causal dependencies in academic settings
Exhibits

4.7 Lisrel model of R & D effectiveness (without response bias) for academic natural science units 107
4.8 Lisrel model of R & D effectiveness (response bias included) for academic natural science units 108
4.9 Lisrel model of R & D effectiveness (response bias included) for academic technological science units 110
5.1 Components of the congruency-pattern variables and relationships between the components 129
5.2 Predicting research-unit performance on the basis of objective and subjective resources 139
5.3 Predicting research-unit performance on the basis of the congruency-pattern variables 141
5.4 Mean ratings of Administrative effectiveness by congruency with respect to Scientific staff competence 142
5.5 Predicting research-unit performance on the basis of objective resources and satisfaction, and on the basis of congruency-pattern variables 145
6.1 Influence of six factors on a unit’s choice of research themes, by country 160
6.2 Mean number of projects conducted within research units, by country 162
6.3 Number of Hungarian research units included in the International Study that conducted designated numbers of research projects 162
6.4 Mean number of years projects have been going on, by country and by order in which projects were listed 163
6.5 Degree of completion of research projects, by country and by order in which projects were listed 164
6.6 Percentage of units using research methods, theories, or other specific elements developed in fields of science other than their own, by country and type of respondent 166
7.1 Twelve composites from which indices were developed for assessing various aspects of the pattern of influence 174
7.2 Performance measures in relation to amount of influence (aggregated raters, decisions) 178
7.3 Performance measures in relation to amount of influence (separate raters and types of decisions) 179
7.4 Performance measures in relation to amount of
Exhibits

influence (aggregated raters, decisions; effects associated with type of unit removed) 180

7.5 Performance measures in relation to distribution of influence (separate raters and types of decisions) 183

8.1 Group size and Output of published papers, controlling for Group age 201

8.2 Group size and Output per scientist, controlling for Group age 201

8.3 Group size and the Index of scientific recognition, controlling for Group age and Output of published papers 201

8.4 Group age and Output of published papers, controlling for Group size 202

8.5 Group age and Output per scientist, controlling for Group size 202

8.6 Group age and Scientific recognition, controlling for Group size 202

8.7 Group size and Output per scientist, given the level of the leader’s involvement in the work of the group and controlling for Group age 206

8.8 Group size and Scientific recognition, given the level of the leader’s involvement in the work of the group and controlling for Group age 206

8.9 Group size and Output per scientist, given the research experience of the leader and controlling for Group age 208

8.10 Group size and Scientific recognition, given the research experience of the leader and controlling for Group age 208

8.11 The number of significant partners in the group reported by the leader, by Group size 213

8.12 The number of significant partners in the group reported by the nonleaders, by Group size 213

8.13 Group size and the scientists’ involvement in identifying the area of interest, controlling for Group age 214

8.14 Group size and the scientists’ involvement in the perception and choice of methods, controlling for Group age 214

8.15 Group size and the scientists’ involvement in the formulation of hypotheses, controlling for Group age 214

8.16 Group size and Cohesiveness, controlling for Group age 215
<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.17</td>
<td>Group size and Scientific recognition, given the degree of coherence of the research program and controlling for Group age</td>
</tr>
<tr>
<td>8.18</td>
<td>Group size and Scientific recognition, given the degree of members' identification with the group and controlling for Group age</td>
</tr>
<tr>
<td>8.19</td>
<td>Group size and Scientific recognition, given the level of members' participation in research planning and controlling for Group age</td>
</tr>
<tr>
<td>8.20</td>
<td>Research performance and Group size (controlling Group age) and Group age (controlling Group size), by Cohesiveness</td>
</tr>
<tr>
<td>9.1</td>
<td>Relationships examined in the study</td>
</tr>
<tr>
<td>9.2</td>
<td>Summary table of communication and contextual measures used in the chapter</td>
</tr>
<tr>
<td>9.3</td>
<td>Relationships among the channel communication measures</td>
</tr>
<tr>
<td>9.4</td>
<td>Channel communication as related to Institutional/Scientific setting and to Country</td>
</tr>
<tr>
<td>9.5</td>
<td>Relationships between perceptual measures of channel communication and contextual dimensions</td>
</tr>
<tr>
<td>9.6</td>
<td>Relationships between countable measures of channel communication and contextual dimensions</td>
</tr>
<tr>
<td>9.7</td>
<td>Relationships between channel communication and research-unit performance (signal communication)</td>
</tr>
<tr>
<td>9.8</td>
<td>Mean R & D effectiveness by Contacts with users, in different settings, as rated by (1) unit heads and (2) staff scientists</td>
</tr>
<tr>
<td>9.9</td>
<td>Mean Recognition and mean number of published written products, by Number of S & T visits, in different settings</td>
</tr>
<tr>
<td>9.10</td>
<td>Summary of multivariate relationships of channel communication to research-unit performance (signal communication)</td>
</tr>
<tr>
<td>9.11</td>
<td>Percent of variance explained in measures of research-unit performance by measures of channel communication, controlling for Unit size, Age of staff, and Experience</td>
</tr>
<tr>
<td>9.12</td>
<td>General pattern of relationships among measures of channel communication, research-unit performance (signal communication), and contextual dimensions</td>
</tr>
<tr>
<td>Exhibit</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>10.1</td>
<td>Relationships of motivation strength to 10 measures of research-unit performance</td>
</tr>
<tr>
<td>10.2</td>
<td>Mean performance by motivation in designated types of research units</td>
</tr>
<tr>
<td>10.3</td>
<td>Mean performance by motivation</td>
</tr>
<tr>
<td>10.4</td>
<td>Relationships of selected diversity indicators to three aspects of research-unit performance</td>
</tr>
<tr>
<td>10.5</td>
<td>Mean performance by number of projects in the research unit</td>
</tr>
<tr>
<td>10.6</td>
<td>Mean performance by percent time spent by (a) team leader and (b) staff scientists on R & D within the unit</td>
</tr>
<tr>
<td>10.7</td>
<td>Multiple relationships of diversity and motivation to aspects of research-unit performance</td>
</tr>
<tr>
<td>11.1</td>
<td>Principal components analysis of performance ratings, all units combined</td>
</tr>
<tr>
<td>11.2</td>
<td>Relationships between rated-effectiveness factor scores and a priori rated-effectiveness measures</td>
</tr>
<tr>
<td>11.3</td>
<td>Relationships between rated-effectiveness factor scores and research-unit products</td>
</tr>
<tr>
<td>11.4</td>
<td>Items with strongest relationships to General effectiveness as rated by staff scientists</td>
</tr>
<tr>
<td>11.5</td>
<td>Items with strongest relationships to General effectiveness as rated by unit head</td>
</tr>
<tr>
<td>11.6</td>
<td>Items with strongest relationships to Recognition effectiveness</td>
</tr>
<tr>
<td>11.7</td>
<td>Items with strongest relationships to Training effectiveness</td>
</tr>
<tr>
<td>11.8</td>
<td>Items with strongest relationships to Applications effectiveness</td>
</tr>
<tr>
<td>11.9</td>
<td>Items with strongest relationships to Social effectiveness</td>
</tr>
<tr>
<td>11.10</td>
<td>Items with strongest relationships to Administrative effectiveness</td>
</tr>
<tr>
<td>11.11</td>
<td>Synopsis of the highest correlations between rated-effectiveness factor scores and major groups of items</td>
</tr>
<tr>
<td>11.12</td>
<td>Relationship between rated-effectiveness factor scores and Country, Type, and Field</td>
</tr>
<tr>
<td>11.13</td>
<td>Analyses of variance: rated-effectiveness factor scores by types of research units</td>
</tr>
<tr>
<td>11.14</td>
<td>General effectiveness as rated by staff scientists: pattern of relationship in six types of research units</td>
</tr>
<tr>
<td>11.15</td>
<td>General effectiveness as rated by unit head: pattern of relationship in six types of research units</td>
</tr>
<tr>
<td>Exhibit</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>11.16</td>
<td>Recognition: pattern of relationship in six types of research units</td>
</tr>
<tr>
<td>11.17</td>
<td>Training effectiveness: pattern of relationship in six types of research units</td>
</tr>
<tr>
<td>11.18</td>
<td>Applications effectiveness: pattern of relationship in six types of research units</td>
</tr>
<tr>
<td>11.19</td>
<td>Social effectiveness: pattern of relationship in six types of research units</td>
</tr>
<tr>
<td>11.20</td>
<td>Administrative effectiveness: pattern of relationship in six types of research units</td>
</tr>
<tr>
<td>12.1</td>
<td>Conceptual grouping of the variables</td>
</tr>
<tr>
<td>12.2</td>
<td>Structural relationships among variables in conceptual group D</td>
</tr>
<tr>
<td>12.3</td>
<td>Contour map showing hierarchical correlogram of representative measures</td>
</tr>
<tr>
<td>12.4</td>
<td>Six countries ranked on various composite measures of input and performance</td>
</tr>
<tr>
<td>12.5</td>
<td>Illustration of derivation of composite rankings</td>
</tr>
<tr>
<td>13.1</td>
<td>Classification of Type of organization in the Round 1 data</td>
</tr>
<tr>
<td>13.2</td>
<td>The cross-classification of Scientific discipline and Type of organization</td>
</tr>
<tr>
<td>13.3</td>
<td>Correlation ratios between designated control factors and indicators of research-unit performance and decision making</td>
</tr>
<tr>
<td>13.4</td>
<td>Clustering subgroups of research units on the basis of patterns of research orientations</td>
</tr>
<tr>
<td>13.5</td>
<td>Clustering subgroups of research units on the basis of patterns of research outputs</td>
</tr>
<tr>
<td>13.6</td>
<td>Clustering subgroups of research units on the basis of patterns of influence</td>
</tr>
<tr>
<td>13.7</td>
<td>Composition of the Typology of research units in the Round 1 data</td>
</tr>
<tr>
<td>14.1</td>
<td>Full form of measurement model</td>
</tr>
<tr>
<td>14.2</td>
<td>Coefficients of construct validity and correlated error as estimated by three forms of the measurement model</td>
</tr>
<tr>
<td>14.3</td>
<td>Estimated construct validity and correlated error for individual and composite performance measures, for three types of raters</td>
</tr>
<tr>
<td>14.4</td>
<td>Relationships among aspects of performance</td>
</tr>
<tr>
<td>14.5</td>
<td>A general structural model for the relationship between two measures</td>
</tr>
</tbody>
</table>
Foreword by Unesco

The complexity of modern society and the sweeping changes that have occurred in everyday life over the past thirty years have placed new responsibilities on governments. The variety of concerns with which they are involved has increased enormously. Governmental programs exist today that were unknown even a decade ago. Other programs have expanded their responsibilities to take account of modern social wants and needs. Thus, the competition for resources has intensified greatly.

At the same time, citizens in many countries are asking for more public accountability. They want to know the use to which their resources are put, and they demand that the programs that receive support be both efficient and effective. In many countries, these concerns have been raised with particular reference to support of scientific and technological research. As a consequence, the importance of improving the productivity and the effectiveness of scientific research has been recognized.

More important perhaps, is that the gap between those countries with abundant financial and technological resources and those with fewer such resources will widen if some intervention is not undertaken. This has been obvious for many years, even prior to the initiation of the project reported in this book. The formal recognition of this situation occurred when the Declaration on the Establishment of a New International Economic Order was adopted by the General Assembly of the United Na-
xxvi Foreword

tions in 1974. An implication of the declaration is the need to
make available to developing countries the methods and achieve-
ments of modern science and technology. Elucidating the means
of engaging in effective scientific and technological research ac-
activities represents one of Unesco’s contributions to this goal.

Meeting in 1976 in Nairobi at its nineteenth session, the Un-
esco General Conference, through Programme Resolution 2.01,
reaffirmed “Unesco’s front-ranking role and responsibility . . .
for . . . the promotion . . . of scientific and technological progress
(and) the encouragement of the application of scientific and tech-
nological advances to development,” and authorized the Direc-
ator-General “to place special emphasis on programmes in the
field of science and technology aimed at . . . the building up and
strengthening of institutional infrastructures.” The work re-
ported in this volume is thus part of Unesco’s activities described
in the foregoing resolution and in similar resolutions passed at
earlier sessions of the General Conference.

In building a research team composed of people from a variety
of national and institutional settings to undertake this work, Un-
esco consciously sought not only to encourage cross-national co-
operation and fertilization of ideas, but to produce a work that,
because of its origins, would be useful in many national and
institutional settings.

The number of people and organizations that have made vital
contributions to this International Study is very large. Clearly,
the study could not have proceeded without the cooperation of
the thousands of respondents who participated as members of the
research units being studied, or without the dedicated work of
the scores of people who collected and processed the data, or
without the financial and institutional support of the sponsoring
organizations in each of the participating countries. For this in-
ternational cooperation and particularly for the valuable contri-
bution of Dr. Frank M. Andrews, the scientific editor and one of
the authors of this volume, Unesco wishes to express its grati-
tude. The members of the International Research Team that has
been responsible for carrying out the study, all of whom are
authors of chapters in this volume, are profoundly grateful for
the many kinds of support that have been provided. It is the
team’s strong hope that the uses of the data and results – for both
applied and theoretical purposes – will constitute a compelling
justification of the resources and efforts that have been invested.
Finally, it is appropriate to acknowledge the contributions of Dr.
Michael Pesci, who for several years devoted his professional
efforts to furthering this International Study.
Foreword

The authors contributing to this volume have done so as individual professionals; neither Unesco nor the authors’ employing institutions are responsible for the views and opinions expressed herein.
Preface

The nature of this book

This book reports results from The International Comparative Study on the Organization and Performance of Research Units. (For this study, a research unit is a cluster of scientists and technical support personnel working under single leadership, sometimes as a team, on a specific research or experimental development project.) Results from Round 1 of the study, involving data collected from over 11,000 participants in approximately 1,200 research units in six European nations, are presented here.

The study has had two broad purposes. One is goal oriented: to find ways to enhance the performance effectiveness of research units and of their members. The second is methodological: to develop and test methods for assessing the organization and performance of research units. Results relevant to both these purposes are described in this book.

Unesco initiated this study, under its Program of Science and Technology Policies, and has been responsible for its coordination. The design and implementation of Round 1 were carried out by a small international team of social scientists, natural scientists, and managers of research and experimental development (R & D). These are the individuals who wrote the chapters that follow.

As readers of this volume will quickly perceive, the interests
xxx Preface

of the authors are broad and varied. (There is a corresponding breadth to the International Study.) Each chapter is an independent presentation, the product of its own authors' interests, preferred analytic approaches, and professional judgments. With the exception of Chapters 1 and 2, which constitute the introduction to the book, there is no necessary or logical order among the chapters (indeed, within Parts 2 and 3 the sequence is alphabetical by the authors' national or international affiliation). However, although the chapters are independent presentations, they are not unrelated to one another: They share a common conceptual framework; they report analyses of a common set of empirical data; and they draw upon and refer to one another for complementary results and descriptive information.

Although each chapter will appeal to some readers, it is not expected that every chapter will interest every reader. Hence, to help readers find their way among the many topics discussed in this book, the following section describes the organization of the book and comments briefly on each of the chapters. The reader should also note that each chapter (except the first) concludes with a short summary or discussion of many of the key ideas, which can be used to help locate material of particular interest.

An overview of the chapters

The book is organized into three main parts. Part 1 consists of two chapters that introduce the background and purposes of the International Study and that describe the methods by which the Round 1 data were collected and analyzed. These chapters provide essential information that readers will need in order to fully understand the later chapters. Part 2 is made up of eight chapters that focus on relationships between various organizational factors and the performance effectiveness of research units and/or their members. Most chapters in this section begin by reviewing results obtained in previous investigations in scientific or other types of organizations and then proceed to extend this previous work through statistical analysis of the rich data from the International Study. Part 3 consists of four chapters with strong methodological orientations. These chapters focus primarily on issues of measurement quality, meaning, and procedures in the International Study, and link these issues to relevant prior research.

In Chapter 1, de Hemptinne and Andrews describe the considerations that led Unesco, within its program on Science and Technology Policies, to initiate the study; note some of the ma-
Preface

Major design features of the project and ways it differs from previous research on R & D; summarize some of the broad trends of the statistical results that are reported in greater detail later in the book; and warn the reader about possible misinterpretations of the data.

Chapter 2 continues the introductory material by providing details about the design of the International Study. Described here are the sources of the data and the measurement procedures. In addition to laying the foundations for the analyses reported later in the book, Chapter 2 provides a brief but reasonably comprehensive description of a methodology that has proven helpful for studying the effectiveness of research units and that is now available for further development in future applications.

Chapter 3, by Knorr, Mittermeir, Aichholzer, and Waller, the first chapter in Part 2, selects one particular indicator of scientific performance—published written products (primarily articles)—and explores its relationships with a wide range of factors that might account for differences in individual and group productivity in academic and industrial research units. The social position of an individual within the social hierarchy of a research unit proves to be one important correlate of differences in performance at the individual level, and the size, age, and scientific exchanges of the research unit are additional factors that relate to group productivity.

Chapter 4, also by Knorr, Mittermeir, Aichholzer, and Waller, takes a different indicator of performance—ratings of a research unit’s R & D effectiveness—and examines how this indicator of performance relates to selected organizational characteristics. A major conclusion is that the results from academic research units seem to be in accord with the “human relations thesis,” that is, with the idea that good leadership leads to high group morale, and that high morale leads to increased productivity by group members. This chapter includes a brief discussion of how its results link to those presented in the preceding chapter.

Chapter 5, by Stolte-Heiskanen, examines the relationships between the levels of externally determined resources of research units (material resources, human resources, and information resources) and the rated performance of those units. Contrary to what some people would expect, the results show that satisfaction with resources, rather than objective resource levels, had the higher relationship to performance, and that of the several types of resources considered, human resources stood out as most significant.
Chapter 6, by Haraszthy and Szántó, is addressed to problems of research planning, with a particular emphasis on science policy planning in Hungary. Comparisons between Hungary and other countries participating in Round 1 of the International Study are presented for a number of variables relevant to the selection and completion of R & D projects by research units.

Chapter 7, by Kowalewska, was stimulated by some previous studies that suggest that the effectiveness of an organization may partly depend on the amount of influence different members have over decision making. Chapter 7 reports that results similar to those found in previous research emerge in the Round 1 data for the kinds of R & D performance more relevant in academic units, but that different results emerge for more applied aspects of performance.

Chapter 8, by Stankiewicz, explores relationships among the size, age, and effectiveness of research units. Drawing from previous studies of R & D, several competing hypotheses about these relationships are proposed and then tested in the Swedish data of the International Study. It is found that the hypotheses’ applicability depends on several factors, including levels of group cohesiveness and characteristics of the group leaders. Although the chapter focuses exclusively on Swedish academic units, the key results have been replicated in the International Study’s data from Austrian and Belgian academic units (according to a personal communication from Stankiewicz).

Chapter 9, by Visart, addresses the relationship between research-unit effectiveness and levels of communication within and between research units. The results show that higher levels of effectiveness tend to occur where there is more communication. The chapter details the particular indicators of effectiveness and communication for which this trend appeared, and other indicators where it did not appear, and explores numerous other characteristics of units that also relate to communication and effectiveness.

Chapter 10, by Andrews, investigates how the performance of research units relates to the motivation of their members and to the presence of “diversity” in the working environment of the unit. In accord with the results of previous research on R & D, a pervasive trend is found in the data of the International Study showing that higher-performing units tended to have more dedicated professional members with more diverse working roles and intellectual resources.

Chapter 11, by Bonmariage, Legros, and Vessière, the first chapter in Part 3, describes a methodological exploration of the
ratings of research-unit effectiveness. With substantial reliance on the statistical technique of factor analysis, this chapter examines the extent to which the “meaning” and relevance of different performance measures varies across different types of research-unit settings and different types of raters.

Chapter 12, by Hunya, Halász, and Fajsz, describes a hierarchically oriented analysis strategy used by the authors in exploring the whole range of data collected in Round 1 of the International Study. Although the analysis procedure is rather different from that employed by other authors, in general it corroborates the results reported elsewhere in the book. One of the analyses that is unique to this chapter, however, is an examination of the relationships between R & D facilities and research-unit performance using data aggregated up to the country level.

Chapter 13, by Cole, details the theoretical and empirical considerations that led to the development of a scheme by which the research units of Round 1 could be classified into one of a small number of distinct types. This “typology” is based on distinctive patterns of research-unit performance (as identified through a multidimensional scaling technique) and proved strongly related to different patterns in the distribution of influence over the work of the unit. The typology plays an important role in the analyses performed by many of the other authors contributing to this volume.

Chapter 14, by Andrews, develops estimates of the quality of the rated-effectiveness measures using a structural modeling technique. Numerical estimates are presented for the portion of each measure’s variation that is valid (i.e., estimated to reflect “true” differences), that is attributable to correlated errors, and that is attributable to random error. The chapter also discusses the implications of these estimated quality levels for the observed relationships reported in other analyses in this book.

Authors’ addresses
Because the authors contributing to this volume are independently responsible for their respective chapters (within broad limits overseen by the editor), because some readers may wish to contact particular authors, and because the authors are widely scattered across eight countries, it seems desirable to list here the mailing addresses (as of early 1978) for those whose names appear first on each chapter.

Frank M. Andrews, Institute for Social Research, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
xxxiv Preface

Joseph Bonmariage, Belgian Archives for the Social Sciences, Batiment SH2, B–1348 Louvain-la-Neuve, Belgium
Gerald A. Cole, Institute of Public Policy Studies, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
Agnes Haraszthy, Group for Science Organization, Hungarian Academy of Sciences, V Munich Ferenc u. 18, Budapest 19, Hungary
Y. de Hemptinne, Division of Science and Technology Policies, Unesco, 75700 Paris, France
Peter Hunya, Jate Laboratory of Cybernetics, Jozsef Attila University, Aradi Vertanuk tere 1, 6722 Szeged, Hungary
Karin D. Knorr, Institute for Advanced Studies, Stumpergasse 56, A–1060 Vienna, Austria
Salomea Kowalewska, Institute of Philosophy and Sociology, Polish Academy of Sciences, ul Nowy Swiat 72, 00–330 Warsaw, Poland
Rikard Stankiewicz, Research Policy Programme, Lund University 8, 22–362 Lund, Sweden
Veronica Stolte-Heiskanen, Institute of Sociology, University of Helsinki, Franzeninkatu 13, SF–00500 Helsinki 50, Finland
Nicole Visart, Division of Science and Technology Policies, Unesco, 75700 Paris, France

Acknowledgments

A general acknowledgment of the many kinds of support that have contributed to this International Study appears in the concluding portion of the Foreward. In addition, many of the individual chapters of this book include acknowledgments to persons and organizations that made particular contributions to work reported in that chapter. Here, however, it is appropriate to acknowledge contributions to the actual processing of the manuscript for this book that have been made by Gregory A. Marks and Verna Yarrington: Their advice and skills have been of great help to the editor.

Frank M. Andrews, editor