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INTRODUCTION 1

Wolfgang Kalkofen
Harvard-Smithsonian Center for Astrophysics, Cambridge, USA

ABSTRACT: The papers in the two sections of this book address two topics: the
efficient solution of radiative transfer problems by means of operator perturbation
and related numerical methods, and the transfer equation for polarized radiation.
This introduction provides synopses of the papers, assessing their specific impor-
tance and relevance within the broader context. The first section begins with a
survey of numerical methods contained in this volume or forming their background;
then the topics covered concern the use of diagonal operators, the acceleration of
the convergence of the resulting equations, line transfer for a time-dependent two-
level atom, the formulation of the transfer and statistical equilibrium equations for
multi-level atoms in terms of equivalent two-level atoms, the construction of stellar
atmospheres with non-LTE line blanketing, and the derivation of operator pertur-
bation equations of low order from high-order equations. The second section, on
polarized radiative transfer, also has its own introduction; the topics concern the
use of the Feautrier equation, the derivation and solution of the transfer equation
using real matrices, or complex matrices. The last two papers describe a discrete
space technique and a generalization of the formal integral of the transfer equa-
tion to the case of an absorption matriz — methods that can be used also for
line transfer with partial redistribution; apart from these two papers and a critical
analysis in a paper in the first section of operator perturbation methods for partial
redistribution, only complete redistribution is treated.

1. OPERATOR PERTURBATION

The task considered in the first section of this book is the solution
of the equation of radiative transfer subject to constraints such as statistical equi-
librium or radiative equilibrium. The mathematical problem can be stated in the
form of a system of coupled differential equations in which the unknown func-
tions are either the source function, or the intensity at all frequencies, angles, and
depths, or, as in the construction of model atmospheres, the fundamental vari-
ables of the medium, such as temperature, pressure, and particle densities. Three
numerical difficulties characterize typical transfer problems: The equations are
non-linear, the system of equations has large order, and important characteristic
length scales differ by many orders of magnitude — factors as large as 10* or 10°
are not uncommon. The first section of this book deals with ways of overcoming
two of these hurdles: it addresses the efficient solution of systems of stiff equations

having very large order. Non-linearities may occur, but they are only incidental.
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The aim of the numerical methods described here is to solve the
equations fast, yet accurately. The tool used is operator perturbation. The pro-
cedure is to separate a problem into two parts, the approximate calculation of
corrections to a provisional solution, and the accurate calculation of the error
made by the provisional solution in a conservation equation. The error becomes
the driving term in the next cycle of correction calculations. Thus, this approach
uses iterations to arrive at an accurate solution, even when the equations are
linear.

In the error calculation, individual (i.e., uncoupled) transfer equa-
tions are solved for known source function. This calculation treats only the short-
range interactions of the radiation field, where the region of influence of the gas ex-
tends over a distance of the order of the mean-free-path of the respective photons.
The long-range influence of scattering and the diffusion of photons in frequency
must be contained in the correction calculation, where an approximate operator
describes the radiative transfer. This places great emphasis on the construction
of the approximate operator to ensure that it model the overall structure of the
solution. It is therefore interesting to inquire into the design principles of operator
perturbation methods with a view of learning how to construct approximate oper-
ators and how to modify or improve existing methods. This is the task considered
in Chapter 1 where I survey the basic ideas on which operator perturbation and
related methods are built.

In Chapter 2 Hamann describes a solution method for multi-level
line transfer problems in extended atmospheres for the Sobolev limit of high dif-
ferential velocity and applies it to a Wolf-Rayet atmosphere. To construct the
approximate transfer operator he assumes that the photo-absorption rate is equal
to the photo-emission rate except for photons that can escape in a single free
flight. Thus the local intensity is equal to the local source function multiplied
by a factor describing the fractional contribution by the line core to the absorp-
tion. The equations amount to a restatement of Rybicki’s (1972) core saturation
method; in the limiting case of a two-level atom without induced emission they
are identical with the core saturation equations (¢f. Rybicki 1985). The essential
contribution of Hamann (and of Werner & Husfeld, 1985; cf. Chapter 3) is to
have embedded the equations in the operator perturbation formalism. Since the

resulting approximate transfer operator is diagonal, the solution of a line transfer
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problem is similar to A-iteration; it would be identical to A-iteration were it not
for the leakage of photons in the wings of a line. This is the decisive difference.
Hamann’s equations converge whereas A-iteration fails, except in trivial cases. Of
course, convergence is not spectacular. It is, in fact, no better than that of the
core saturation method. But that does not seriously limit the usefulness of this
method whose real strength is rooted in the fact that it separates the transfer
equations from the equations of statistical equilibrium, which are now entirely lo-
cal. The iterative solution process therefore alternates between the scalar transfer
equations for the individual lines and the equations of statistical equilibrium. The
method can be viewed as an accelerated A-iteration in which the amplification fac-
tor varies from being approximately equal to the inverse of the wing fraction of
the absorption profile near the surface of the atmosphere, to the inverse of the
scattering parameter ¢ at large depths. For strong lines this amplification can
have enormous values far from the surface: a factor of several million is reached
in one example.

The separation of the problem into the solution of the transfer equa-
tion and the equations of statistical equilibrium has two major advantages: It
makes the order of the matrices occurring in this formulation for a given problem
very small, thus allowing more ambitious problems to be attacked; and it makes
programming the equations very simple. The drawback of the method is that it re-
quires a relatively large number of iterations to solve a problem (¢f. Chapter 4 for
an acceleration method applied to these or similar equations). For small atomic
systems, where the computer time is dominated by the solution of the transfer
equations in the error calculation, this method is therefore not competitive with
other operator perturbation methods.

Among interesting numerical questions discussed are: the calcula-
tion of the boundary between line core and line wings for a moving medium in
the comoving frame formulation; the free parameter that defines the boundary
between line core and wings and its effect on convergence; the formal solution in
the error calculation treats individual frequencies but the equations are coupled
over angle (or impact parameter) by the Thomson scattering term, a complication
that is handled by means of the variable Eddington factor technique.

The formulation of the statistical equilibrium equations makes use
of net radiative bracket expressions. A full discussion of these is given in Chapter

6. See Chapters 3 and 4 for similar operator perturbation methods.
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Werner’s approach to radiative transfer in Chapter 3 is similar to
that described in Chapter 2, showing the same provenance from the group un-
der Hunger in Kiel. The operator perturbation method is based on approximate
A-operators that separate the transfer equation from the equations of statistical
equilibrium, which then contain no explicit depth-coupling. In addition to the
purely diagonal matrix used by Hamann, Werner also employs a triangular oper-
ator first suggested by Scharmer (1981, 1984); and for lines with an underlying
continuum he investigates a different, but again diagonal, operator, with a larger
probability for photon escape from the medium (¢f. also Chapter 2); the free pa-
rameter defining this probability is chosen so as to improve the stability of the
method.

In many instances the triangular operator is almost as convenient
to use as the diagonal operator since at any given depth in the atmosphere the
contribution of the lower layers to the radiation field is known; its speed advantage
in the number of iterations over the diagonal operator can be as large as a factor
of two, but more typically it is only slight. A possible disadvantage is that the
equations of statistical equilibrium must be solved sequentially, and from the
lower boundary in the outward direction, opposite from the direction in which the
hydrostatic equilibrium equation is integrated. On parallel processors the purely
diagonal operator is to be preferred since the calculations at the various depths
are then independent of one another and can be carried out in parallel. This
is also true in the construction of model atmospheres if the pressure is updated
outside the Newton-Raphson iteration cycle.

Two types of problem are solved here with this method: multi-level
line formation in atmospheres with given gross structure, and the construction
of hydrogen line-blanketed model atmospheres in plane-parallel geometry, for ef-
fective temperatures between 30,000 and 100,000K. A problem is solved by the
linearization of the conservation equations (viz radiative, hydrostatic, and statisti-
cal equilibrium; particle and charge conservation). The procedure is analogous to
the complete linearization method of Auer & Mihalas (1969) except that the trans-
fer operator is a diagonal or triangular matrix. In line transfer calculations for
a given atmosphere the problem can often be simplified further by cancelling the
core frequencies analytically; the statistical equilibrium equations resulting with
the diagonal operator are then linear in the particle densities and no Newton-

Raphson perturbation is necessary for their solution.
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The operator perturbation method is more convenient than the com-
plete linearization method because of the smaller size of the matrices and because
of ease of programming, and it allows much larger atomic systems to be attacked
(¢f. however Chapter 6 for expressing large problems in terms of equivalent two-
level atoms). The author estimates that up to 100 non-LTE levels can be included
in a calculation — the number of lines follows from the number of levels — whereas
the complete linearization method is restricted to approximately 20 levels, the lim-
its being set by the size of the largest matrices occurring in the formulations. The
demonstration problems in the paper are for a hydrogen atom with five bound
levels, and both line and continuum transitions are treated. Typical iteration
numbers are 10 to 30 in the line formation calculations for given atmospheric
structure, and 15 to 40 in model atmosphere constructions, the higher iteration
numbers required at the lower temperatures; a maximum of 85 iterations is needed
with the diagonal operator for a 30,000K model atmosphere. Werner presents de-
tailed documentation of the properties of the method, including the tuning of
the free parameter defining the separation of the line into core and wings and
the effect on the rate of convergence and the stability. His experience with the
two approximate operators suggests that the transfer in the wings, as implied by
the triangular operator for example, may not have to be treated in line transfer
problems but is important in the construction of model atmospheres, where wing
transfer has a major impact on the rate of convergence.

While this method requires tooc many iterations to be competitive
in the solution of small atomic systems with more efficient operator perturbation
methods, such as Scharmer’s (1981, 1984) or the one described in Chapter 5, the
ease of formulation and programming and the small size of the matrices occurring

in it make it ideal for many-level atoms.

In Chapter 4 Auer offers a remedy for the relatively slow convergence
of operator perturbation methods based on diagonal operators, reducing by a
factor of at least two the number of iterations required to solve a problem. Any
linearly convergent iteration scheme can be accelerated by this approach.

Unlike the Newton-Raphson equations, arising in complete lineariza-
tion methods for example, operator perturbation equations have only linear con-
vergence. The convergence rate is rapid in spite of that when the characteristics

of the approximate operator match those of the exact operator, t.e., when the
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maximal eigenvalue of the matrix in the perturbation expansion of the solution
vector (cf. Kalkofen 1984, eq. 2.15) is small compared to unity. But diagonal
approximate operators typically give eigenvalues near unity (¢f. Olson, Auer &
Buchler 1986, figs. 1-5), resulting in slow convergence when the new solution is
based exclusively on the preceding solution (or in divergence for eigenvalues ex-
ceeding unity). To speed up convergence, information from earlier solutions must
be used as well. Auer shows how this can be accomplished. He constrains the new
solution by requiring that it be as close as possible in the least squares sense to
an estimate of the converged solution of the equations. This requirement yields
the coefficients for the extrapolation.

The method does not change the nature of the iterations, which
remains linear. But it does drastically reduce the number of iterations necessary
to satisfy a convergence criterion. Auer graphically depicts the improvement in the
performance of solution methods that rely on diagonal approximate operators. He
varies the number of preceding iterates he uses in the extrapolation and compares
weighted and unweighted accelerations for approximate diagonal operators that
are either obtained from estimates of the diagonal elements of the exact operator
or constructed with the core saturation method. The improvement in his test
cases is large. In one instance the number of iterations drops from more than 100
to about 20; weighting of the corrections by the inverse of the source function
saves a few iterations. It is worth noting that the speed-up of convergence is

obtained at almost no expense.

An important parameter in a line transfer problem is the thermal-
ization length, the maximal distance over which features in the gross structure
of an atmosphere are communicated by the line radiation to the gas. In a semi-
infinite atmosphere this is also the depth to which the boundary influences the
gas, and where the source function of a two-level atom saturates to the Planck
function. Other parameters important for the general character of the solution
are frequencies at which the atmosphere becomes transparent at points closer to
the surface than the thermalization depth. The respective frequencies are located
between line center and the frequency for which the monochromatic photon mean
free path is of the order of the thermalization length. Frequencies further out
in the wings are unimportant for the overall structure of the solution since the

amount of energy escaping is too low to have an effect. Thus the broad features of
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the solution of a line transfer problem are defined by a small set of parameters. In
Chapter 5 I describe an operator perturbation method that makes use of this fact.
The method employs two angle-frequency sets, a coarse set, typically consisting of
a single angle point and a few well-chosen frequency points, and a dense set with
many angle-frequency points. The coarse set is used to construct the approximate
operator of the problem and the dense set to construct the exact operator.

The basic formulation is that of the integral equation method of
Scharmer (c¢f. Scharmer & Nordlund 1982, Scharmer 1984), in which the driving
term of the equation for computing corrections to a provisional solution is the
error made by that solution in the equations of statistical equilibrium. But the
integral equations are used merely as a device to derive a perturbation series. The
actual numerical solution involves no integral equations. Instead, both the exact
and the approximate integral equations are expressed in terms of their differential
equation equivalents. This procedure of deriving the differential equations via
intermediary integral equations insures that the perturbation series is equivalent
to the exact equation and does not contain any extraneous terms (cf. Chapter
8). Thus, only systems of Feautrier equations are solved. In the case of the
correction calculation the system is coupled but has very low order, which is given
by the number of angle-frequency points in the sparse set; and in the case of the
error calculation the system has high order, but the equations are uncoupled. As
generally in these operator perturbation methods, the accuracy of the solution
is given by the accuracy of the error calculation, which is second-order for the
ordinary Feautrier equation and fourth-order with Auer’s (1976, 1984) Hermite
form.

Time-dependent problems in a moving medium are solved efficiently
by using the converged solution at any time step as the starting solution at the
subsequent time step and by perturbing the exact operator about the approximate
operator that corresponds to the static medium. As a consequence, the profile
function for the approximate operator is symmetric, halving the already low order
of the system of equations for the correction calculation; in addition, the matrices
need to be constructed and inverted only at the beginning of the computation,
leading to substantial savings in computer effort. The drawback of this procedure
is that the method is suitable only for problems in which the macroscopic flow ve-
locity does not exceed a few times the speed of sound, a restriction that is typical,

however, of formulations of transfer problems in the observer frame (¢f. Chapter 7
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for a similarly restricted method, and Chapter 2 for the treatment of high dif-
ferential velocities). This method assumes that a multi-level transfer problem is
expressed as a sequence of equivalent two-level problems (¢f. Chapter 6).

Two numerical examples are given in the paper. For line transfer in a
model chromosphere with a velocity amplitude of three Doppler widths the exact
problem is described with 4 angle points per hemisphere and 30 frequency points in
the half profile, and the approximate operator is computed for a symmetric profile
with a single angle point and 5 frequency points. This amounts to a reduction by
a factor of about 50 of the order of the system of equations. Convergence is rapid.
It is further accelerated by assuming that consecutive corrections at a given depth
point define a geometric series, reducing the number of iterations required for the
maximal error of the solution to drop below 1% to typically three or four, except

for the first time step, where five or six iterations are necessary.

The typical line transfer problem in a stellar atmosphere consists of
the equations of statistical equilibrium for an atomic model with several levels
and the equations of radiative transfer for the corresponding lines and continua.
One of the standard methods of solving these coupled equations is the complete
linearization method of Auer & Mihalas (1969). This method accounts to first
order for all the interactions of all the levels of the atom and at all optical depths.
If the linearization is done fully consistently the resulting Newton-Raphson equa-
tions converge quadratically. This is a very satisfying property; but to achieve it
one pays a high price in the order of the system of equations unless the number of
lines is very small. A limit on the number of lines, and hence levels, that can be
treated is soon reached. In the integral equation method the limit concerns pri-
marily the number of levels rather than lines, but the result is the same. One way
to increase the practical limit on the size of the atomic model has been described
in Chapters 2 and 3, where the diagonal operator of the transfer equation permit-
ted an exact solution of the coupling of all the interactions taking place within
the model atom at any given optical depth, but at the expense of approximating
the depth dependence of the transfer. Another way is to do just the opposite,
to treat the depth dependence within each line exactly but to approximate the
interactions among the various levels of the atom; since this approach treats the
radiative transfer of a single line at any one time, the model is referred to as the

equivalent two-level atom. In both cases, the numerical problem separates into
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one in which the order of the system of equations is given by the parameters of
a single line, either the number of depth points or the number of angle-frequency
points, and by the parameters of the model atom, such as the number of bound
levels. How to set up the equations of the equivalent two-level atom is described
in Chapter 6 by Avrett & Loeser.

The paper addresses two main questions: how to write the equations
of statistical equilibrium, whether in terms of individual photoexcitation and de-
excitation rates or in terms of net radiative rates; and which level equations to
single out of the equations of statistical equilibrium for deriving the source func-
tion of the equivalent two-level atom, whether the equations of only the upper
and lower levels for the transition in question, or of all the levels.

When the statistical equations are written in terms of single upward
and downward rates, the numerical results can be meaningless at large depths.
This is especially true for the multiplet problem, discussed in the paper, in which
the lower level is common and the upper levels are strongly coupled collisionally.
On the other hand, when the equations are expressed in terms of net radiative
rates, it can happen that the populations near the surface are negative, a result
from which an iteration scheme might not recover. The best approach is to mix
the two formulations, with the single and net rate expressions contributing each
one half near the surface, and the net rates being used exclusively at large depths.
All strong lines are treated the same way, the transition from one to the other
formulation occurring in a particular layer in the atmosphere. The weak lines
are frequently solved by a different procedure; since their source function is de-
termined largely by the transfer in the strong lines, their radiation field can be
obtained from a A-iteration. Avrett & Loeser describe both procedures for de-
riving the source function equation of an arbitrary model atom, t.e., using either
just the two combining levels, or all levels. No general prescription is given as to
which procedure might be better, whether the former, which contains all the other
unknown population ratios, or the latter, which contains all the other unknown
radiation fields; in their numerical code the authors allow both procedures since
they have found that different applications have different requirements. The two
sets of source function equations are identical in the example given in the paper,
that of a three-level atom.

Note that in spite of the symmetrical relation of the proceddre de-

scribed in this Chapter with the operator perturbation methods of Chapters 2
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and 3 concerning the separation of the equations into two blocks, one for the in-
dividual lines and the other for the atomic interactions, the equivalent two-level
atom does not constitute an operator perturbation method. It may be used in
conjunction with any approach to the solution of non-LTE problems, including
operator perturbation methods (¢f. Chapter 5), for which it extends the scope by
removing the limits based on matrix size, leaving only the practical limit from
managing large numbers of interactions. In this respect it resembles the methods
based on diagonal operators. Note also that in any iteration the source function
interaction coefficients (i.e., € and B) in the transfer equation of a particular line
depend only on information from the preceding iteration; they do not (in this for-
mulation) depend on the order in which the transfer equations are solved. Thus
the transfer equations can be solved in parallel, an operation that could be carried

out efficiently on parallel processors.

In Chapter 7 Anderson describes a method for constructing line-
blanketed model atmospheres in statistical equilibrium. In an ingenious way he
uses the related, critical observations that the overall structure of an atmosphere
depends mainly on the gross properties of the opacity and on the long-range
communication between distant parts of the atmosphere. To exploit these features
he groups the photons of the fine-grained frequency set needed for a full accounting
of the opacity in a line-blanketed medium into coarse-grained frequency blocks in
which all photons experience approximately the same interactions, 1.e., photons
in a given frequency block have all nearly the same mean free path and probability
of scattering into other layers. Thus, a block might consist of frequency points in
the cores of the lowest resonance lines of some atom, or in the near or far wings,
or of frequency points in subordinate lines of another atom. It follows that the
frequencies in a block may be drawn from different, non-contiguous parts of the
spectrum.

The transfer and conservation equations written for frequency blocks
are treated in much the same way as the equations in the complete linearization
method of Auer & Mihalas (1969). The main difference is that explicit reference
to particle densities is eliminated. Therefore the order of the system of equations
is independent of the number of energy levels in the equations of statistical equi-
librium and is given essentially by the number of coarse-grained frequency blocks.

In the example of this paper the number of block equations is on the order of 100,
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