After almost a century, the field of quantum gravity remains as difficult and inspiring as ever. Today, it finds itself a field divided, with two major contenders dominating: string theory, the leading exemplification of the covariant quantization program; and loop quantum gravity, the canonical scheme based on Dirac’s constrained Hamiltonian quantization. However, there are now a number of other innovative schemes providing promising new avenues.

Encapsulating the latest debates on this topic, this book details the different approaches to understanding the very nature of space and time. It brings together leading researchers in each of these approaches to quantum gravity to explore these competing possibilities in an open way. Its comprehensive coverage explores all the current approaches to solving the problem of quantum gravity, addressing the strengths and weaknesses of each approach, to give researchers and graduate students an up-to-date view of the field.

JEFF MURUGAN is a Senior Lecturer in the Department of Mathematics and Applied Mathematics and a member of the Astrophysics, Cosmology & Gravity Center, University of Cape Town. He is interested in all aspects of gravity and is currently working on string theory and connections between gauge theories and gravity.

AMANDA WELTMAN is a Senior Lecturer in the Department of Mathematics and Applied Mathematics and a member of the Astrophysics, Cosmology & Gravity Center, University of Cape Town. She works in the exciting bridging areas of string cosmology, studying physical ways to test string theory within the context of cosmology.

GEORGE F. R. ELLIS is Emeritus Professor of Applied Mathematics and Honorary Research Associate in the Mathematics Department, University of Cape Town. He works on general relativity theory, cosmology, complex systems, and the way physics underlies the functioning of the human brain.
FOUNDATIONS OF SPACE AND TIME
Reflections on Quantum Gravity

Edited by
JEFF MURUGAN, AMANDA WELTMAN &
GEORGE F. R. ELLIS

ISBN 978-0-521-11440-0 (hardback)

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
Contents

List of contributors

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The problem with quantum gravity</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>JEFF MURUGAN, AMANDA WELTMAN & GEORGE F. R. ELLIS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A dialogue on the nature of gravity</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>T. PADMANABHAN</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>What is it all about?</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Local Rindler observers and entropy flow</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Thermodynamic reinterpretation of the field equations</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Field equations from a new variational principle</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison with the conventional perspective and further comments</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary and outlook</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>Effective theories and modifications of gravity</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>C. P. BURGESS</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Modifying gravity over short distances</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Modifying gravity over long distances</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusions</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>The small-scale structure of spacetime</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>STEVEN CARLIP</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>4.2</td>
<td>Spontaneous dimensional reduction?</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Strong coupling and small-scale structure</td>
<td>77</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press
www.cambridge.org
Contents

4.4 Spacetime foam? 80
4.5 What next? 81
References 82

5 Ultraviolet divergences in supersymmetric theories 85
KELLOG STEILLE
5.1 Introduction 85
5.2 Algebraic renormalization and ectoplasm 93
References 103

6 Cosmological quantum billiards 106
AXEL KLEINSCHMIDT & HERMANN NICOLAI
6.1 Introduction 106
6.2 Minisuperspace quantization 109
6.3 Automorphy and the E_{10} Weyl group 113
6.4 Classical and quantum chaos 116
6.5 Supersymmetry 118
6.6 Outlook 119
References 122

7 Progress in RNS string theory and pure spinors 125
DIMITRY POLYAKOV
7.1 Introduction 125
7.2 BRST charges of higher-order BRST cohomologies 135
7.3 Properties of Q_n: cohomologies 136
7.4 New BRST charges and deformed pure spinors 137
7.5 Conclusions 138
References 139

8 Recent trends in superstring phenomenology 140
MASSIMO BIANCHI
8.1 Foreword 140
8.2 String theory: another primer 141
8.3 Phenomenological scenarios 149
8.4 Intersecting vs magnetized branes 153
8.5 Unoriented D-brane instantons 156
8.6 Outlook 159
References 159

9 Emergent spacetime 164
ROBERT DE MELLO KOCH & JEFF MURUGAN
9.1 Introduction 164
9.2 Simplicity of the $\frac{1}{2}$-BPS sector 166
Contents

9.3 Dictionary 167
9.4 Organizing the degrees of freedom of a matrix model 168
9.5 Gravitons 171
9.6 Strings 172
9.7 Giant gravitons 173
9.8 New geometries 175
9.9 Outlook 178

References 180

10 Loop quantum gravity 185
HANNO SAHLMANN
10.1 Introduction 185
10.2 Kinematical setup 187
10.3 The Hamilton constraint 197
10.4 Applications 203
10.5 Outlook 207

References 208

11 Loop quantum gravity and cosmology 211
MARTIN BOJOWALD
11.1 Introduction 211
11.2 Effective dynamics 214
11.3 Discrete dynamics 225
11.4 Consistent dynamics 242
11.5 Consistent effective discrete dynamics 247
11.6 Outlook: future dynamics 251

References 252

12 The microscopic dynamics of quantum space as a group field theory 257
DANIELE ORITI
12.1 Introduction 257
12.2 Dynamics of 2D quantum space as a group field theory 279
12.3 Towards a group field theory formulation of 4D quantum gravity 293
12.4 A selection of research directions and recent results 302
12.5 Some important open issues 314
12.6 Conclusions 317

References 318

13 Causal dynamical triangulations and the quest for quantum gravity 321
J. AMBJÖRNN, J. JURKIEWICZ & R. LOLL
13.1 Quantum gravity – taking a conservative stance 321
13.2 What CDT quantum gravity is about 323
13.3 What CDT quantum gravity is not about 325
13.4 CDT key achievements I – demonstrating the need for causality 326
13.5 CDT key achievements II – the emergence of spacetime as we know it 330
13.6 CDT key achievements III – a window on Planckian dynamics 332
13.7 Open issues and outlook 334

References 335

14 Proper time is stochastic time in 2D quantum gravity 338
J. AMBJØRN, R. LOLL, Y. WATABIKI, W. WESTRA & S. ZOHREN
14.1 Introduction 338
14.2 The CDT formalism 339
14.3 Generalized CDT 343
14.4 The matrix model representation 347
14.5 CDT string field theory 347
14.6 The matrix model, once again 352
14.7 Stochastic quantization 355
14.8 The extended Hamiltonian 358

References 360

15 Logic is to the quantum as geometry is to gravity 363
RAFAEL SORKIN
15.1 Quantum gravity and quantal reality 363
15.2 Histories and events (the kinematic input) 364
15.3 Preclusion and the quantal measure (the dynamical input) 366
15.4 The 3-slit paradox and its cognates 368
15.5 Freeing the coevent 371
15.6 The multiplicative scheme: an example of anhomomorphic coevents 374
15.7 Preclusive separability and the “measurement problem” 377
15.8 Open questions and further work 380
15.9 Appendix: Formal deduction of the 3-slit contradiction 382

References 383

16 Causal sets: discreteness without symmetry breaking 385
JOE HENSON
16.1 Introduction: seeing atoms with the naked eye 385
16.2 Causal sets 387
16.3 Towards quantum gravity 395
Contents

16.4 Consequences of spacetime discreteness 401
16.5 Conclusion: back to the rough ground 405
References 407

17 The Big Bang, quantum gravity and black-hole information loss 410
ROGER PENROSE
17.1 General remarks 410
17.2 The principles of equivalence and quantum superposition 411
17.3 Cosmology and the 2nd law 412
17.4 Twistor theory and the regularization of infinities 415
References 417

18 Conversations in string theory 419
AMANDA WELTMAN, JEFF MURUGAN & GEORGE F. R. ELLIS
References 433
Index 435
Contributors

J. Ambjørn
The Niels Bohr Institute, Copenhagen University,
Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
and
Institute for Theoretical Physics, Utrecht University,
Leuvenlaan 4, NL-3584 CE Utrecht, The Netherlands

Massimo Bianchi
Dipartimento di Fisica and Sezione I.N.F.N.,
Università di Roma “Tor Vergata”,
Via della Ricerca Scientifica, 00133 Roma, Italy

Martin Bojowald
Institute for Gravitation and the Cosmos,
Penn State University,
State College, PA 16801, USA

Cliff Burgess
Department of Physics & Astronomy, McMaster University,
1280 Main St. W, Hamilton, Ontario, Canada, L8S 4M1
and
Perimeter Institute for Theoretical Physics,
31 Caroline St. N,
Waterloo, Ontario, Canada, N2L 2Y5
List of contributors

Steven Carlip
Department of Physics,
University of California,
Davis, CA 95616, USA

Robert de Mello Koch
National Institute for Theoretical Physics,
Department of Physics and Centre for Theoretical Physics,
University of the Witwatersrand, Wits, 2050, South Africa

George F. R. Ellis
Astrophysics, Cosmology & Gravity Center,
University of Cape Town, Private Bag,
Rondebosch, 7700, South Africa

Joe Henson
Perimeter Institute,
31 Caroline Street North,
Waterloo, Ontario, Canada, N2L 2Y5

J. Jurkiewicz
Jagiellonian University,
Krakow Institute of Physics
Reymonta 4
Krakow 30-059, Poland

Axel Kleinschmidt
Physique Théorique et Mathématique &
International Solvay Institutes, Université Libre de Bruxelles,
Boulevard du Triomphe, ULB-CP231,
BE-1050 Bruxelles, Belgium

Renate Loll
Institute for Theoretical Physics, Utrecht University,
Leuvenlaan 4, NL-3584 CE Utrecht, The Netherlands
List of contributors

Jeff Murugan
Astrophysics, Cosmology & Gravity Center,
University of Cape Town, Private Bag,
Rondebosch, 7700, South Africa

Hermann Nicolai
Max-Planck-Institut für Gravitationsphysik,
Albert-Einstein-Institut,
Am Mühlenberg 1, DE-14476, Golm, Germany

Daniele Oriti
Max-Planck-Institut für Gravitationsphysik,
Albert-Einstein-Institut,
Am Mühlenberg 1, DE-14476 Golm, Germany

Thanu Padmanabhan
IUCAA, Pune University Campus,
Ganeshkhind, Pune 411007, India

Roger Penrose
The Mathematical Institute,
24–29 Saint Giles, Oxford OX1 3LB, UK

Dimitri Polyakov
National Institute for Theoretical Physics,
Department of Physics and Centre for Theoretical Physics,
University of the Witwatersrand,
Wits, 2050, South Africa

Hanno Sahlmann
Aria Pacific Center for Theoretical Physics
Hogil Kim Memorial Bldg. POSTECH
San 31, Hyoga-dong, Nam-gu
Pohang 790-784, Republic of Korea
List of contributors

Rafael Sorkin
Perimeter Institute,
31 Caroline Street N., Waterloo, Ontario, Canada, N2L 2Y5
and
Department of Physics,
Syracuse University, Syracuse, NY 13244-1130, USA

Kellog Stelle
Imperial College of Science, Technology and Medicine,
London Physics Department
South Kensington Campus
London
SW7 2AZ

Y. Watabiki
Tokyo Institute of Technology,
Dept. of Physics, High Energy Theory Group,
2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

Amanda Weltman
Astrophysics, Cosmology & Gravity Center,
University of Cape Town, Private Bag,
Rondebosch, 7700, South Africa

W. Westra
Department of Physics, University of Iceland,
Dunhaga 3, 107 Reykjavik, Iceland

S. Zohren
Mathematical Institute, Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands