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The problem with quantum gravity

jeff murugan, amanda weltman & george f.r. ellis

“The effort to understand the Universe is one of the very few things that lifts human

life a little above the level of farce, and gives it some of the grace of tragedy.”

Steven Weinberg, The First Three Minutes, 1997

After almost a century, the field of quantum gravity remains as difficult, frustrating,

inspiring, and alluring as ever. Built on answering just one question – How can

quantum mechanics be merged with gravity? – it has developed into the modern

muse of theoretical physics.

Things were not always this way. Indeed, inspired by the monumental victory

against the laws of Nature that was quantum electrodynamics (QED), the 1950s

saw the frontiers of quantum physics push to the new and unchartered territory of

gravity with a remarkable sense of optimism. After all, if nothing else, gravity is

orders of magnitude weaker than the electromagnetic interaction; surely it would

succumb more easily. Nature, it would seem, is not without a sense of irony. For an

appreciation of how this optimism eroded over the next 30 years, there is perhaps

no better account than Feynman’s Lectures on Gravitation. Contemporary with his

epic Feynman Lectures on Physics, these lectures document Feynman’s program of

quantizing gravity “like afield theorist.” In it he sets out to reverse-engineer a theory

of gravity starting from the purely phenomenological observations that gravity is

a long-range, static interaction that couples to the energy content of matter with

universal attraction. Taken together, these facts hint toward a field theory built

from a massless, spin-2 graviton propagating on a flat, Minkowski background,

i.e., gμν = ημν + hμν . The question of quantizing gravity then distills down to

how to formulate a consistent quantum theory of this graviton. The consequences
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2 The problem with quantum gravity

of this, quite simplistic, viewpoint are profound. For example, in the quantum

theory, a massless spin-2 graviton has two helicity states and hence so too must the

associated classical gravitational field have two dynamical degrees of freedom. For

this counting to match, one is forced to incorporate a redundancy to encode that

many possible classical field configurations could correspond to a single physical

state, i.e., a gauge symmetry. Ultimately, it is this gauge symmetry that can be

interpreted as the principle of equivalence in the low-energy, classical limit.

By all accounts, Feynman’s foray into quantum gravity culminated in the early

1960s with a covariant quantization of the gravitational field to one-loop order.

This begs the question then of why, 50 years on and with the general principles laid

down, this pragmatic program of quantizing gravity has not reached completion?

There are really two main problems with this quantization scheme. The first is as

contemporary as they get but is really an age-old issue that goes all the way back

to Einstein himself: the cosmological constant. Classically, there are no theoretical

constraints on � and it can, without much ado, be set to zero. In a quantum field

theory, however, every field has an infinite number of modes, each of which possess

a “zero-point” energy. Consequently, one expects that the vacuum energy of the

field is infinite. In flat space this problem is easily overcome by redefining the

(arbitrary) zero-point of the energy scale. Gravity, on the other hand, couples to

the energy content of a system so that when the gravitational interaction is turned

on, the vacuum fluctuations of any quantized field generate actual physical effects.

Moreover, even if the modes are cut off at some momentum scale, the vacuum

energy density generated by the remaining modes can still be quite large, in stark

contrast to all observations (about 123 orders of magnitude so, in fact).

The second problem is the equally thorny question of the renormalizability of

the quantum theory. Although more technical, it can nevertheless be summarized

very roughly as follows. Every loop in a covariant Feynman diagram expansion

contributes

Iloop ∼
∫

dDpp4J−8

in D spacetime dimensions when the interaction is mediated by a spin-J particle.

This contribution is finite when 4J −8+D <0 and infinite when 4J −8+D >0.

In the marginal case where 4J −8+D=0, loop contributions diverge but only log-

arithmically and can always be absorbed into a redefinition of various couplings in

the theory. This is the case in a renormalizable theory. Gravity in four dimensions is

mediated by a spin-2 boson, the graviton, and consequently receives infinite contri-

butions at each loop order. In this case, an infinite number of parameters are required

to absorb all of the divergences and the theory is non-renormalizable. An equiva-

lent way of phrasing this is in terms of the coupling constant. In units of �= c=1,
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The problem with quantum gravity 3

any theory whose coupling constant has a positive mass-dimension is finite. If the

coupling constant is either dimensionless or has negative mass-dimension then the

theory is renormalizable or non-renormalizable respectively. In general relativity,

the coupling constant, GN , has mass-dimension −2 and, again, the theory is non-

renormalizable.1 Nevertheless, this perturbative covariant approach historically

illuminated the way forward.

Essentially, the more symmetric a theory is, the more tightly constrained are the

counter-terms generated by the renormalization process and consequently, the more

convergent it will be.Apparently then, one way to improve the ultraviolet behavior

of a theory is to build more symmetry into it. This of course is the line of reasoning

that led, in the 1970s, to the idea of supergravity, a theory of local (or gauged)

supersymmetry that mixes bosonic and fermionic fields in a way that necessar-

ily incorporates general covariance and hence gravity. The ultraviolet behavior of

the quantum theory is under better control essentially because divergent bosonic

(fermionic) loop contributions are cancelled by the associated contribution coming

from the fermionic (bosonic) super-partner. For a time these supergravity theories

(and the N = 8 theory in four dimensions in particular) provided an enormous

source of comfort for a community still reeling from prolonged battles against the

infinities of quantum gravity.2 However, it was soon realized that, even this much

enlarged symmetry could not guarantee finiteness at all orders in the loop expan-

sion and the supergravity machine lost a lot of its momentum.3 Fortunately, another

juggernaut loomed on the horizon.

Touted variously as the most promising candidate for a theory of quantum grav-

ity, the “only game in town,” or even the “theory of everything,” string theory is

a quantum theory of one-dimensional objects whose size is Planckian and whose

different oscillation modes constitute the different members of the particle zoo. In

particular, the first excited mode of a quantum closed string is a massless, spin-2

state that is identified with a graviton. String theory then appears to be a mathemat-

ically consistent (anomaly-free) quantum theory of gravity but, and perhaps more

1 In contemporary terms, this non-renormalizability can be understood as a result of the fact that general relativity
is an effective field theory, encoding low-energy gravitational dynamics (as summed up beautifully in Chapters
2 and 3). At small scales and high energies, this effective treatment breaks down and can manifest in a number
of rather interesting phenomena. One such phenomenon, a change in the number of dimensions of space, can
be found in Carlip’s study of the small-scale structure of spacetime in this volume.

2 So much so, in fact, that in his inaugural lecture for the Lucasian chair, Stephen Hawking declared that N =8
supergravity might just be the final theory signaling the “end of theoretical physics”!

3 This momentum has resurfaced with a vengeance in the past few months (of editing this book). Following from
an astounding observation of Witten on the relation between perturbative string theory and perturbative gauge
theory formulated in twistor variables, a remarkable new insight appeared about the structure of gluon scattering
amplitudes. When combined with the Kawai–Lewellen–Tye relations, this provided just the ammunition needed
to resume the assault on the finiteness problem of N =8 supergravity. Indeed, initial reports from the front seem
quite positive (see the discussions by Stelle and Nicolai in this volume).
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4 The problem with quantum gravity

importantly, it also necessarily contains quantum versions of the remaining fun-

damental interactions. Here, for the first time, was a theory where one was forced

to consider all the fundamental forces of nature at once. However, famously, even

after 30 years of painstaking work, string theory remains incomplete.

The problemswith string theory aremanifold.Historically, thefirst one to emerge

was its dimensionality. In string theory “dimension” is no longer a fixed concept. It

is instead a property of particular solutions of the theory. For example, any anomaly-

and ghost-free solution of the superstring equations of motion possessing N = 1

supersymmetry on theworldsheetmust have a spacetime dimension4 D=10.While

this problem can be circumvented by the old idea of Kaluza–Klein compactification

it leads directly to the more thorny question of the uniqueness of solutions of the

theory. Each compactification leads to a different vacuum state of string theory

and since, if it is correct, at least one such state should describe our Universe in

its entirety, the potentially enormous number (∼10500 at last count) of consistent

solutions,with no perturbativemechanism to select among them,5 leads some critics

to question the predictive power of the theory. Even more worrying is the fact that,

while the theory is perturbatively finite in the sense discussed above (i.e., order

by order), the perturbation series does not appear to converge. The veracity of the

claims of finiteness of the theory is consequently unclear. By the time the 1990s

rolled around the field found itself, somewhat understandably, in a state of malaise.

This all changed in 1995 when, building on earlier work, Polchinski discovered

D-branes, a class of extended solitonic objects upon which open strings end with

Dirichlet boundary conditions. This proved to be the trigger for a second superstring

revolution and was followed in quick succession byWitten’s landmark discovery of

M-theory and the web of string dualities connecting the five known 10-dimensional

string theories and 11-dimensional supergravity that same year. Even more impor-

tantly, it was the direct antecedent of Maldacena’s 1997 conjecture that quantum

gravity (in the guise of Type IIB string theory on the 10-dimensional AdS5×S5) is

holographically dual to a gauge theory (here, a maximally supersymmetric Yang–

Mills theory living on the four-dimensional boundary of AdS5). The impact that

this duality has had on contemporary theoretical physics has been enormous, rang-

ing from heavy ion physics and quantum criticality through emergent properties of

spacetime6 and the integrability structures of both string and gauge theories. Unfor-

tunately, even after a decade of development, Maldacena’s conjecture remains just

that. So while a wealth of results have already been uncovered, there remains much

4 Although it is worth pointing out that noncritical string theories can exist in any dimension ≤10.
5 That an overwhelmingly large number of these solutions are supersymmetric, with no viable supersymmetry-

breaking mechanism in sight, does not help much either.
6 As is discussed in Chapter 9 by de Mello Koch and Murugan.
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The problem with quantum gravity 5

to be understood about what theAdS/CFT correspondence tells us about the nature

of quantum gravity.

The developments outlined above form part of what might broadly be called

the “covariant quantization” of gravity. Of course, in a field as diverse as quantum

gravity, it is not the only program that has managed to make traction. A different

approach to the problem is the “canonical quantization” of gravity. Based on the

seminal 1967 work of DeWitt, this scheme utilizes the constrained Hamiltonian

quantization, invented byDirac in 1950 to quantize systemswith gauge symmetries,

to canonically quantize general relativity. A key characteristic of the canonical

approach to quantum gravity is that it is nonperturbative. In contrast to perturbative

formulations which require a choice to be made for a background spacetime metric

from which to perturb, nonperturbative canonical methods have the advantage of

being background-independent. This means that all aspects of space and time can,

in principle, be determined from solutions of the theory.7 In practice, however,

this canonical approach was, for some time, stalled by the sheer intractability of

the constraint (Wheeler–DeWitt) equation in the canonical variables of general

relativity.

A major breakthrough came in the mid-1980s with Ashtekar’s formulation of

general relativity in terms of a new set of variables related to the holonomy group

of the spacetime manifold. This in turn furnished a new basis for a nonperturbative

quantization of general relativity in terms ofWilson loops. The result was the theory

known as loop quantum gravity.8 As one of the family of canonical quantum gravity

theories, loop quantum gravity is both nonperturbative and manifestly background-

independent. Among its major successes9 are a nonperturbative quantization of

3-space geometry, a counting of the microstates of four-dimensional Schwarschild

black holes and even a consistent truncation of its Hilbert space that suffices for

questions of a cosmological nature to be addressed.10 However, to pursue our

analogy, on the battleground of quantum gravity, no single approach has yet proved

faultless and the loop program (which includes LQG, spin-foam theories, loop

quantum cosmology and, more recently, the group field theory of Oriti as outlined

in Chapter 12) is no exception. Its critics point to, among other concerns, the lack of

a consistent semiclassical limit that recovers general relativity and the necessarily a

posteriori incorporation of the remaining interactions (as well as the matter content

of the standard model).

7 By contrast, in string theory for example, the dynamics of the string in spacetime should encode information
about the spacetime metric so it would be preferable then that the metric not appear in the formulation of
the theory. One solution to this problem is to find a viable nonperturbative formulation of the theory, as the
AdS/CFT correspondence promises to provide.

8 As described in Chapter 10 of this volume.
9 Although, it must be said, these are not unequivocal.

10 For an account of this so-called loop quantum cosmology, see Chapter 11 of this volume.
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6 The problem with quantum gravity

In addition to these two main research programs, the landscape of quantum

gravity has been populated by a host of smaller, less developed, approaches that

include Penrose’s twistor program, Regge calculus, Euclidean quantum gravity,

the causal dynamical triangulations of Ambjørn and Loll and Sorkin’s causal set

theory, each with its own fundamental tenet. The causal set program – introduced

in this volume in Chapters 15 and 16, respectively – for example, is built on the

principle that spacetime is fundamentally discrete with events related by a partial

order that can be interpreted as an emergent causal structure.

This book has its origins in a (today, all too common) argument regarding the

merits of string theory versus loop quantum gravity. After months of animated

debate about quantization, symmetries, dimensions, background independence and

innumerable other facets of the discussion,we realized that someof the questionswe

weremeditating onmight actually be useful to a broader community.These thoughts

eventually crystallized in a wonderful workshop on the Foundations of Space &

Time held at the Stellenbosch Institute for Advanced Study during August 2009 in

honor of the 70th birthday of one of us (G. F. R. E.). The meeting brought together

proponents of all the major programs in quantum gravity for a week of intense

discussion and debate on the pros, cons, accomplishments, and shortcomings of

each area.

By asking each speaker to be as open as possible about their own area and as

curious as possible about each other’s, we hoped to stimulate the kind of cross-

field discussion that would make clear to everyone how far down the path to

quantizing gravity we really are. The individual sessions were kept deliberately

informal to facilitate such discussions. Interspersed among these were a num-

ber of focussed discussion sessions, with the most memorable of these revolving

around two questions in particular. The first, “Is spacetime fundamentally discrete

or continuous?,” elicited several, varied responseswithLennySusskind’s (only par-

tially tongue-in-cheek) “Yes!” being one of the most unexpected and (after some

elaboration) interesting. For the second, open discussion, we posed the question:

“What do you want from a theory of quantum gravity?,” with the hopes of eliciting

a wish-list of sorts from participants. The ensuing discussion was exactly what

we expected; stimulating and insightful with answers ranging from testability at

low energies to a complete understanding of the microscopic constituents of black

holes.

In some ways we believe that we were enormously successful. In others not. On

the one hand, language remains a significant problem in cross-field communication

with only a very small set of researchers able to understand the technical nuances

of other fields (and, consequently, appreciate some of the results therein). On the

other hand, as disparate as they were in their approaches to the problem, almost

everyone agreed that, even after all this time, the battle to reconcile quantum theory
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The problem with quantum gravity 7

with gravity is far from over. These discussions, debates, and arguments were

documented in the various contributions and synthesized into this volume. In this

sense, this is arguably the most up-to-date account of where the field of quantum

gravity currently stands. We hope that the reader will find reading this book as

enjoyable as we did in putting it together.
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A dialogue on the nature of gravity

t. padmanabhan

I describe the conceptual and mathematical basis of an approach which

describes gravity as an emergent phenomenon. Combining the princi-

ple of equivalence and the principle of general covariance with known

properties of local Rindler horizons, perceived by observers accelerated

with respect to local inertial frames, one can provide a thermody-

namic reinterpretation of the field equations describing gravity in any

diffeomorphism-invariant theory. This fact, in turn, leads us to the possi-

bility of deriving the field equations of gravity by maximizing a suitably

defined entropy functional, without using the metric tensor as a dynam-

ical variable. The approach synthesizes concepts from quantum theory,

thermodynamics and gravity, leading to a fresh perspective on the nature

of gravity. The description is presented here in the form of a dialogue,

thereby addressing several frequently asked questions.

2.1 What is it all about?

Harold:
1 For quite some time now, you have been talking about ‘gravity being

an emergent phenomenon’ and a ‘thermodynamic perspective on gravity’. This is

quite different from the conventional point of view inwhich gravity is a fundamental

interaction and spacetime thermodynamics of, say, black holes is a particular result

which can be derived in a specific context. Honestly, while I find your papers

fascinating I am not clear about the broad picture you are trying to convey. Maybe

1 Harold was a very useful creation originally due to Julian Schwinger [1] and stands for Hypothetically Alert
Reader Of Limitless Dedication. In the present context, I think of Harold as Hypothetically Alert Relativist
Open to Logical Discussions.

Foundations of Space and Time: Reflections on Quantum Gravity, eds Jeff Murugan, Amanda Weltman and
George F. R. Ellis. Published by Cambridge University Press. © Cambridge University Press 2012.
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you could begin by clarifying what this is all about, before we plunge into the

details? What is the roadmap, so to speak?

Me: To begin with, I will show you that the equations of motion describing gravity

in any diffeomorphism-invariant theory can be given [2] a suggestive thermody-

namic reinterpretation (Sections 2.2, 2.3). Second, taking a cue from this, I can

formulate a variational principle for a suitably defined entropy functional – involv-

ing both gravity and matter – which will lead to the field equations of gravity [3,4]

without varying the metric tensor as a dynamical variable (Section 2.4).

Harold: Suppose I have an action for gravity plus matter (in D dimensions)

A=
∫

dDx
√

−g
[

L(Rab
cd ,gab)+Lmatt(g

ab,qA)
]

(2.1)

where L is any scalar built from metric and curvature and Lmatt is the matter

Lagrangian depending on the metric and some matter variables qA. (I will assume

L does not involve derivatives of curvature tensor, to simplify the discussion.) If

I vary gab in the action I will get some equations of motion (see, e.g., [5, 6]), say,

2Eab =Tab where Eab is2

Eab =P cde
a Rbcde −2∇c∇dPacdb −

1

2
Lgab; P abcd ≡

∂L

∂Rabcd

(2.2)

Now, you are telling me that (i) you can give a thermodynamic interpretation to the

equation 2Eab =Tab just because it comes from a scalar Lagrangian and (ii) you can

also derive it from an entropy maximization principle. I admit it is fascinating. But

why should I take this approach as more fundamental, conceptually, than the good

old way of just varying the total Lagrangian L+Lmatt and getting 2Eab = Tab?

Why is it more than a curiosity?

Me: That brings me to the third aspect of the formulation which I will discuss

towards the end (Section 2.5). In my approach, I can provide a natural explanation

to several puzzling aspects of gravity and horizon thermodynamics, all of which

have to be thought of as mere algebraic accidents in the conventional approach you

mentioned. Let me give an analogy. In Newtonian gravity, the fact that inertial mass

is equal to the gravitational mass is an algebraic accident without any fundamental

explanation. But in a geometrical theory of gravity based on the principle of equiv-

alence, this fact finds a natural explanation. Similarly, I think we can make progress

by identifying key facts which have no explanation in the conventional approach

and providing them a natural explanation from a different perspective. You will

also see that this approach connects up several pieces of conventional theory in an

elegant manner.

2 The signature is − + + + and Latin letters cover spacetime indices while Greek letters run over space indices.
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10 A dialogue on the nature of gravity

Harold:Your ideas also seem to be quite different from other works which describe

gravity as an emergent phenomenon [7]. Can you explain your motivation?

Me: Yes. The original inspiration for my work, as for many others, comes from the

old idea of Sakharov [8] which attempted to describe spacetime dynamics as akin

to the theory of elasticity. There are two crucial differences between my approach

and many other ones.

To begin with, I realized that the thermodynamic description transcends

Einstein’s general relativity and can incorporate a much wider class of theories

– this was first pointed out in [9] and elaborated in several of my papers – while

many other approaches concentrated on just Einstein’s theory. In fact, many other

approaches use techniques strongly linked to Einstein’s theory – like, for example,

the Raychaudhuri equation to study the rate of change of horizon area, which is

difficult to generalize to theories in which the horizon entropy is not proportional

to horizon area. I use more general techniques.

Second, I work at the level of action principle and its symmetries to a large

extent so I have a handle on the off-shell structure of the theory; in fact, much of

the thermodynamic interpretation in my approach is closely linked to the structure

of action functional (like, e.g., the existence of surface term in action, holographic

nature, etc.) for gravitational theories. This link is central to me while it is not taken

into account in any other approach.

Harold: So essentially you are claiming that the thermodynamics of horizons is

more central than the dynamics of the gravitational field while the conventional

view is probably the other way around. Why do you stress the thermal aspects of

horizons so much? Can you give a motivation?

Me: Because thermal phenomena is a window to microstructure! Let me explain.

We know that the continuum description of a fluid, say, in terms of a set of dynam-

ical variables like density ρ, velocity v, etc. has a life of its own. At the same time,

we also know that these dynamical variables and the description have no validity

at a fundamental level where the matter is discrete. But one can actually guess the

existence of microstructure without using any experimental proof for the molecular

nature of the fluid, just from the fact that the fluid or a gas exhibits thermal phe-

nomena involving temperature and transfer of heat energy. If the fluid is treated as

a continuum and is described by ρ(t,x), v(t,x), etc., all the way down, then it is not

possible to explain the thermal phenomena in a natural manner. As first stressed by

Boltzmann, the heat content of afluid arises due to randommotion of discretemicro-

scopic structures which must exist in the fluid. These new degrees of freedom –

which we now know are related to the actual molecules – make the fluid capable of

storing energy internally and exchanging it with surroundings. So, given an appar-

ently continuum phenomenon which exhibits temperature, Boltzmann could infer

the existence of underlying discrete degrees of freedom.
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