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Introduction

Since its very beginning, quantum mechanics has been developed to deal with sys-
tems on the atomic or sub-atomic scale. For many decades, there has been no reason
to think about its application to macroscopic systems. Actually, macroscopic
objects have even been used to show how bizarre quantum effects would appear
if quantum mechanics were applied beyond its original realm. This is, for example,
the essence of the so-called Schrödinger cat paradox (Schrödinger, 1935). How-
ever, due to recent advances in the design of systems on the meso- and nanoscopic
scales, as well as in cryogenic techniques, this situation has changed drastically. It
is now quite natural to ask whether a specific quantum effect, collectively involving
a macroscopic number of particles, could occur in these systems.

In this book it is our intention to address the quantum mechanical effects that
take place in properly chosen or built “macroscopic” systems. Starting from a very
naïve point of view, we could always ask what happens to systems whose classical
dynamics can be described by equations of motion equivalent to those of particles
(or fields) in a given potential (or potential energy density). These can be repre-
sented by a generalized “coordinate” ϕ(r, t) which could either describe a field
variable or a “point particle” if it is not position dependent, ϕ(r, t) = ϕ(t). If not
for the presence of dissipative terms which, as we will discuss later, cause problems
in the canonical quantization procedure, these equations of motion can, in general,
be derived from a Hamiltonian which allows us, through canonical methods, to
immediately write down their quantum mechanical versions. Now, depending on
the structure of the potential energy of the problem, we can boldly explore any
effect there would be if we were dealing with an ordinary quantum mechanical
particle.

Everything we have said so far is perfectly acceptable, at least operationally, if
two specific requirements are met. Firstly, the parameters present in our problem
must be such that any combination thereof, leading to a quantity with dimensions of
angular momentum (or action), is of the order of �. Secondly, we must be sure that
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2 Introduction

the inclusion of dissipative terms, no matter how it is done at this stage, does not
interfere greatly with the quantum effects resulting from the former requirement.

Needless to say, following this prescription, we are implicitly assuming that
there is no natural limitation for the application of quantum mechanics to any phys-
ical system. Although it does pose several conceptual questions, we would have to
propose alternative theories if we wanted to think otherwise. So, we have chosen to
rely on this hypothesis and explore it as far as we can, not bothering, at least openly,
about questions concerning the foundations of quantum mechanics, a promise that
is obviously hard to keep fully in such a subtle application of the quantum theory.

In a sense, we will be looking for situations where the microscopic parame-
ters involved in the description of a given phenomenon only appear in particular
combinations which rule the dynamics of a few collective macroscopic variables.
Moreover, these resulting combinations are such that their numerical values are
comparable to those compatible with the application of quantum mechanics to
these systems. The remaining degrees of freedom constitute what we shall call
the environment, and the signature of their existence is the presence of dissipative
terms in the classical equations of motion of the variables of interest. Therefore,
it is mandatory to learn how to include dissipative effects in quantum mechan-
ics if we want to understand its application to our target systems. In other words,
quantum dissipation is a natural consequence of the study of macroscopic quantum
phenomena.

There are many systems that fulfill our requirements to display quantum effects
at the macroscopic level. Unfortunately, they are not tiny marbles tunneling across a
wall but rather a somewhat more subtle variation thereof. Usually they are magnetic
or superconducting samples of reduced dimensions subject to very low tempera-
tures. Although these are not the only examples we could mention, they will be
the ones elected as our favorite throughout this book. Magnetic systems provide
us with quantum effects that, on top of being experimentally realizable, are easier
to interpret whereas superconductors (in particular, superconducting devices) are
those systems where the search for quantum effects at the macroscopic level really
started and also present the most reliable tests of their existence.

Regarding superconducting devices, we have chosen to deal with current-biased
Josephson junctions (CBJJs), superconducting quantum interference devices
(SQUIDs), and Cooper pair boxes (CPBs), and investigate the quantum mechanics
of the corresponding dynamical variables of interest. We realize that their behavior
may also be viewed as a manifestation of genuine quantum mechanical effects as
applied to macroscopic bodies. Accordingly, the difficulty of perfect isolation of
our tiny (but still macroscopic) devices brings dissipative effects into play which
forces us to search for a systematic treatment of the influence of damping on many
different quantum mechanical phenomena. It will be shown that this environmental
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Introduction 3

influence tends to inhibit the occurrence of quantum effects on the macroscopic
level in the great majority of cases.

However, it is not only this fundamental aspect of the subject that attracts the
attention of the scientific community to these systems. Since under specific condi-
tions the behavior of some of these devices is well mimicked by a two-state system
dynamics, they can be regarded as qubits. Therefore, the hope of controlling the
destructive influence of dissipation on complex networks using our devices as their
basic elements raises expectations toward the fabrication of quantum computers
where the new qubits could be accessed by ordinary electronic circuitry.

We have organized the chapters in the following way. We start by introducing
some basic concepts on the phenomenology of magnetism and superconductivity
in Chapters 2 and 3, respectively, in order to give the reader some background
material to understand the specific physical situations where macroscopic quantum
phenomena can take place in each of these areas. Nucleation problems, vortex and
wall dynamics, and device physics are all analyzed within the quantum mechanical
context.

In Chapter 4 we review the classical theory of Brownian motion in order to show
the reader how the physics of those systems can be understood if they obey classical
mechanics. Then, we develop the general approach for the quantum mechanics of
non-isolated systems, the system-plus-reservoir approach, and establish the general
program to be followed from then onwards.

Once this has been done, we argue, in Chapters 5 and 6, in favor of semi-
empirical approaches for treating the so-called dissipative quantum systems and
introduce a few models for the reservoir coupled to the system of interest. In par-
ticular, we introduce what we call the minimal model, where the system of interest
is coupled to a set of non-interacting harmonic oscillators through a coordinate–
coordinate interaction Hamiltonian. We impose the conditions under which the
specific coupling we have chosen allows us to reproduce the expected dynamics of
the system in the classical limit and study the quantum mechanics of this composite
system. From this study we are able to describe the influence of the environment on
the quantum dynamics of the system of interest solely in terms of the phenomeno-
logical constants present in the classical dynamics of that system. The way to deal
with the same effect with regard to the equilibrium state of the system of inter-
est is also addressed in Chapter 6 for the specific case of the minimal model. We
should stress here that although the treatment is broad enough to cope with many
different kinds of dissipative systems, we will be focusing on the so-called ohmic
dissipation, since it is ubiquitous in most systems of interest to us.

Chapters 7, 8, and 9 are devoted to the application of our methods to the dynam-
ics of wave packets in the classically accessible region of the phase space of the
system (where a thorough analysis of decoherence is also presented), the decay
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4 Introduction

of “massive” particles and field configurations from metastable states by quantum
tunneling and coherent tunneling between bistable states, respectively.

Finally, in Chapter 10 we apply some of these results to the superconducting
devices presented in this book, aiming at the possibility of using them as reliable
qubits. Further applications and experimental results are briefly analyzed in this
section.

Functional methods – path integrals in particular – are at the heart of the mathe-
matical techniques employed throughout most of the chapters of this book, and a
review of some of them is presented in the appendices.
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2

Elements of magnetism

Magnetic phenomena have been observed for a very long time, and by many
ancient civilizations. The very fact that a piece of magnetite, the so-called lode-
stone, has the ability to attract some particular materials has been reported many
times over the centuries. Even the use of this sort of material for building instru-
ments – such as compasses – to orient navigators has been the subject of about
three millennia of uncertainty (Mattis, 1988).

However, only recently have more profound and systematic studies been per-
formed on materials which present that kind of property, and a very rich collection
of phenomena has appeared related to them. Paramagnetism, diamagnetism, and
the ordered ferromagnetic or anti-ferromagnetic phases of some materials are
examples we could mention (Mattis, 1988; White, 2007). The lodestone itself is
an example of a ferromagnetic substance which provides us with a permanent
magnetic field at room temperature.

It is an experimental fact, first observed by Pierre Curie, that many of those mate-
rials attracted by the lodestone, which we call magnetic materials, do not present
any magnetic property if isolated from the external influence of the latter. Actu-
ally, their static magnetic susceptibilities, which are a measure of the response
of the material to the external stimulus (see below), behave, at sufficiently high
temperatures, in the following way:

χM ≡ lim
H→0

M

H
= C

T
. (2.1)

In this expression, C is a positive constant that depends on the material under
investigation, M is the magnetization, and H is the external magnetic field, whose
definitions will be given shortly. Materials presenting this sort of behavior are
called paramagnetic.

On the contrary, there are materials whose behavior contrasts with that presented
above. Instead of being attracted by the external magnetic field, they are repelled
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6 Elements of magnetism

TC T 

M(T)

Figure 2.1 Magnetization as a function of temperature

by its presence. In this case, the magnetic susceptibility is negative and varies very
slowly with temperature. This is the so-called diamagnetism.

Finally, there is a third kind of magnetic material; those materials which present
a spontaneous magnetization even in the absence of an externally applied field, the
ferromagnetic materials. Although there can be paramagnetic substances which
keep their magnetic properties as given by (2.1) down to zero temperature, it may
happen that the magnetic susceptibility of some materials diverges at a critical
temperature, TC , the so-called Curie temperature. Below that, the material develops
a spontaneous magnetization, M(T ), which has temperature dependence as shown
in Fig. 2.1.

2.1 Macroscopic Maxwell equations: The magnetic moment

In order to explain these three basic phenomena, the natural starting point would be
to analyze the macroscopic Maxwell equations (White, 2007) in a given material
medium. They read:

∇ · D = 4πρ,

∇ · B = 0,

∇ × E = −1

c

∂B
∂t

,

∇ ×H = 4π

c
J+ 1

c

∂D
∂t

, (2.2)

where E ≡ E(r, t) and B ≡ B(r, t) refer, respectively, to averages of the micro-
scopic fields 〈e(r′, t)〉r and 〈h(r′, t)〉r over a macroscopic volume �V about the
position r. ρ ≡ ρ(r, t) and J ≡ J(r, t) represent, respectively, the same sort of
average of the free charge and free current densities and the fields D ≡ D(r, t) and
H ≡ H(r, t) are defined as usual:
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2.1 Macroscopic Maxwell equations: The magnetic moment 7

D = E+ 4πP,

H = B− 4πM, (2.3)

where P ≡ P(r, t) and M ≡ M(r, t) are, respectively, the polarization and mag-
netization fields of the material being considered. As we are interested in magnetic
phenomena we shall mostly be discussing the role played by H and, particularly, M.

From the above equations (White, 2007) we conclude that the magnetization is
actually due to the existence of the microscopic current density Jmol(r, t), which
ultimately results from the stationary atomic motion of the electrons. Attributing a
local current density J(i)

mol(r, t) to the electronic motion about a given molecular or
ionic position ri , we can associate a magnetic moment

μi (t) ≡ μ(ri , t) = 1

2c

∫
dr′(r′ − ri )× J(i)

mol(r
′, t) (2.4)

with that position. From this expression and a general representation of J(i)
mol(r

′, t)
in terms of μi (t) itself it can be shown (White, 2007) that the magnetization is
written

M(r, t) =
〈∑

i

�(r′ − ri )μi (t)

〉
r
, (2.5)

where �(r′ − ri ) is a function normalized to unity and strongly peaked about ri .
Integrating the latter expression over the whole volume of the sample, we easily
see that M(r, t) is the total magnetic moment per unit volume.

If we consider the presence of Ne point electrons per ion (or molecule) at
positions r(i)k relative to ri with velocities v(i)

k , the local current density reads

J(i)
mol(r) =

Ne∑
k=1

ev(i)
k δ(r− ri − r(i)k ), (2.6)

which we can use in (2.4) to show that

μi = e

2mc

Ne∑
k=1

r(i)k × p(i)
k =

e

2mc
Li , (2.7)

where p(i)
k = mv(i)

k is, in the absence of an external field, the canonical momentum

of the kth electron at ri and Li ≡
Ne∑

k=1
r(i)k × p(i)

k is the total electronic angular

momentum at the same site.
Now, it is a standard example of statistical mechanics textbooks to compute

the total magnetization of a set of non-interacting magnetic moments at a finite
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8 Elements of magnetism

temperature (see, for example, Reif (1965)) using as a starting point its energy
when acted on by an external field H, which reads

E = −
∑

i

μi ·H. (2.8)

As a result we find that the magnetization so obtained agrees with the empirical
form suggested by Langevin, which stated that

M = f

(
H

T

)
, (2.9)

where f is an odd function of its argument.1 We see that for sufficiently high
temperatures, the argument of the above function is small, allowing us to replace it
by the lowest-order term of its Taylor expansion. Then, evaluating the paramagnetic
static susceptibility with this expression, we see that it obeys the Curie expression
(2.1) for a material in its paramagnetic phase and, therefore, classical physics can
explain paramagnetism without any problem.

The same does not hold if we try to explain, for example, diamagnetism by the
same token. For this, suppose we apply a constant external field H to our sam-
ple. In this case, the expression for the magnetic moment in terms of the angular
momentum must be modified by replacing

pk → pk − e

c
A(rk) (2.10)

in (2.7), where A(r) is the vector potential which, in the symmetric gauge, reads

A(r) = 1

2
H× r. (2.11)

Accordingly, the Hamiltonian of the electronic system must also be replaced by

H(. . . pk, rk . . .) =
∑

k

1

2m

(
pk − e

c
A(rk)

)2 +U (. . . rk . . .), (2.12)

where U (. . . rk . . .) represents any possible interaction regarding the electronic
system.

Now we can use (2.12) in the classical Boltzmann factor to compute the mag-
netization of the system at finite temperatures, as we have done for paramagnetic
materials. However, in this case, the Bohr–van Leeuwen theorem (Ashcroft and
Mermin, 1976) states that the phase space integral which determines this quantity
must vanish. In other words, there is no classical explanation for diamagnetism
and this is the first situation where we do need quantum mechanics to deal with
magnetic materials.

1 For a classical magnetic moment this function is nμ
(

coth θ − 1
θ

)
, where θ = μH

kB T and n is the density of

magnetic moments.
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2.2 Quantum effects and the order parameter 9

2.2 Quantum effects and the order parameter

Let us start the analysis of quantum mechanics applied to magnetic systems by
writing the quantum mechanical form of (2.7). In order to do that we must remem-
ber the results of the quantization of angular momentum (Merzbacher, 1998),
which tell us that the orbital angular momentum eigenstates of the electronic
motion are given by | 
,m
〉 such that

L2| 
,m
〉 = 
(
+ 1) �
2| 
,m
〉 ; 
 = 0, 1, 2 . . .

Lz| 
,m
〉 = m
 �| 
,m
〉 ; m
 = 0,±1,±2, . . . ,±
 (2.13)

where the conventional notation L = r × p has been used and all the dynami-
cal variables are now regarded as operators. Then, if we are interested in one of
the components of the magnetic moment operator, say μz , we can rewrite the z
component of (2.7) applied on | 
,m
〉 as

μz| 
,m
〉 = −m
 μB | 
,m
〉, (2.14)

where we have used the fact that e = −| e| and

μB ≡ �| e|
2mc

= 9.27× 10−21 erg · G−1 (or × 10−24 J · T−1) (2.15)

is the Bohr magneton.
However, this is not the whole story. The Zeeman effect and the Stern–Gerlach

experiment (Merzbacher, 1998) indicate that the electron itself must carry an
intrinsic magnetic moment which is related to the generator of rotations in a two-
dimensional Hilbert space spanned by the states | s,ms 〉. The eigenvalue problem
associated with these generators is

S2| s,ms〉 = s(s + 1) �
2| s,ms〉 ; s = 1

2

Sz| s,ms〉 = ms �| s,ms〉 ; ms = ±1

2
(2.16)

and the relation equivalent to (2.7) now reads

μ = −gs
μB

�
S ≡ γgS, (2.17)

where S= �σ/2, σ is a vector whose components are the well-known 2 × 2
Pauli matrices and gs ≈ 2 and γg are the electron gyromagnetic factor and ratio,
respectively. Notice that γg has the same sign as the particle’s charge.

Consequently, assuming that the electron is subject to a localized potential and
an external field along the z direction, strong enough so that the energy eigenstates
can be considered as |
, s,m
,ms〉 = |
,m
〉 ⊗ |s,ms〉, its energy eigenvalues
now read

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-11375-5 - An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation
Amir O. Caldeira
Excerpt
More information

http://www.cambridge.org/9780521113755
http://www.cambridge.org
http://www.cambridge.org


10 Elements of magnetism

Em
 ms = (m
 + 2ms) μB H. (2.18)

For weak fields, it is more appropriate to characterize the magnetic state by the
eigenstates of the total angular momentum J = L+ S, | j, 
, s,m〉, from which we
can write (Ashcroft and Mermin, 1976; Merzbacher, 1998)

μ = −g( j, l, s)
μB

�
J ≡ γ j J, (2.19)

where g( j, l, s) is the well-known Landé g-factor.
Now we can compute the statistical Boltzmann factor corresponding to the

interaction −μ ·H and reproduce again expression (2.1) for the paramagnetic sus-
ceptibility (see, for example, Ashcroft and Mermin (1976)) where the constant C
is determined in terms of the total angular momentum quantum number j and the
Bohr magneton.

2.2.1 Diamagnetism

Let us turn now to the diamagnetic phenomenon and suppose we start by taking
the quantum mechanical version of (2.12). So, if we consider the system under the
influence of an external field H we can write

H(. . . pk, rk . . .) =
∑

k

p2
k

2m
+U (. . . rk . . .)+�H, (2.20)

where the full magnetic correction �H in the symmetric gauge (2.11) reads

�H = μB(L+ 2S) ·H+ e2

8mc2
H 2
∑

k

(
x2

k + y2
k

)
, (2.21)

with L+ 2S =∑k Lk + 2Sk . Notice that the total angular momentum is not given
by this expression but by J = L+ S instead. It should be stressed that in (2.21) we
are neglecting spin–orbit terms (see below).

If the full Hamiltonian (2.20) has eigenstates | n〉 and the external field can
be treated perturbatively, we find corrections of the order of H 2 to the energy
eigenvalue En (Ashcroft and Mermin, 1976):

�En = μB〈 n | (L+ 2S) ·H | n 〉 +
∑
n′ �=n

|μB〈 n | (L+ 2S) ·H | n′ 〉 |2
En − En′

+ e2

8mc2
H 2
∑

k

〈 n | x2
k + y2

k | n 〉, (2.22)

from which we see that the paramagnetic effects are dominant for small
fields whenever 〈L 〉 or 〈 S 〉 �= 0. However, for a system with filled atomic
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