Contents

<table>
<thead>
<tr>
<th>List of illustrations</th>
<th>page viii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
</tbody>
</table>

Part I A quick look at various zeta functions

1 Riemann zeta function and other zetas from number theory 3

2 Ihara zeta function 10
 2.1 The usual hypotheses and some definitions 10
 2.2 Primes in X 11
 2.3 Ihara zeta function 12
 2.4 Fundamental group of a graph and its connection with primes 13
 2.5 Ihara determinant formula 17
 2.6 Covering graphs 20
 2.7 Graph theory prime number theorem 21

3 Selberg zeta function 22

4 Ruelle zeta function 27

5 Chaos 31

Part II Ihara zeta function and the graph theory prime number theorem

6 Ihara zeta function of a weighted graph 45
Contents

7 Regular graphs, location of poles of the Ihara zeta, functional equations 47

8 Irregular graphs: what is the Riemann hypothesis? 52

9 Discussion of regular Ramanujan graphs 61
 9.1 Random walks on regular graphs 61
 9.2 Examples: the Paley graph, two-dimensional Euclidean graphs, and the graphs of Lubotzky, Phillips, and Sarnak 63
 9.3 Why the Ramanujan bound is best possible (Alon and Boppana theorem) 68
 9.4 Why are Ramanujan graphs good expanders? 70
 9.5 Why do Ramanujan graphs have small diameters? 73

10 Graph theory prime number theorem 75
 10.1 Which graph properties are determined by the Ihara zeta? 78

Part III Edge and path zeta functions 81

11 Edge zeta functions 83
 11.1 Definitions and Bass’s proof of the Ihara three-term determinant formula 83
 11.2 Properties of W_1 and a proof of the theorem of Kotani and Sunada 90

12 Path zeta functions 98

Part IV Finite unramified Galois coverings of connected graphs 103

13 Finite unramified coverings and Galois groups 105
 13.1 Definitions 105
 13.2 Examples of coverings 111
 13.3 Some ramification experiments 115

14 Fundamental theorem of Galois theory 117

15 Behavior of primes in coverings 128

16 Frobenius automorphisms 133

17 How to construct intermediate coverings using the Frobenius automorphism 141
Contents

18 **Artin L-functions** 144
18.1 Brief survey on representations of finite groups 144
18.2 Definition of the Artin–Ihara L-function 148
18.3 Properties of Artin–Ihara L-functions 154
18.4 Examples of factorizations of Artin–Ihara L-functions 157

19 **Edge Artin L-functions** 164
19.1 Definition and properties of edge Artin L-functions 164
19.2 Proofs of determinant formulas for edge Artin L-functions 169
19.3 Proof of the induction property 173

20 **Path Artin L-functions** 178
20.1 Definition and properties of path Artin L-functions 178
20.2 Induction property 180

21 **Non-isomorphic regular graphs without loops or multiedges having the same Ihara zeta function** 186

22 **Chebotarev density theorem** 194

23 **Siegel poles** 200
23.1 Summary of Siegel pole results 200
23.2 Proof of Theorems 23.3 and 23.5 202
23.3 General case; inflation and deflation 206

Part V Last look at the garden 209

24 **An application to error-correcting codes** 211

25 **Explicit formulas** 216

26 **Again chaos** 218

27 **Final research problems** 227

References 230

Index 236