
Part I

A quick look at various zeta functions

In Part I we give a brief introduction to the zeta functions of Riemann, Ihara,
Selberg, and Ruelle. This part ends with a look at quantum chaos and random
matrix theory.
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1

Riemann zeta function and other zetas
from number theory

There are many popular books about the Riemann zeta and many “serious”
ones as well. Serious references for this topic include Davenport [34],
Edwards [37], Iwaniec and Kowalski [64], Miller and Takloo-Bighash [86],
and Patterson [97]. I googled “zeta functions” today and got around 181 000
hits. The most extensive website was www.aimath.org.

The theory of zeta functions was developed by many people but Riemann’s
work in 1859 was certainly the most important. The concept was generalized
for the purposes of number theorists by Dedekind, Dirichlet, Hecke, Takagi,
Artin, and others. Here we will concentrate on the original, namely Riemann’s
zeta function. The definition is as follows.

Riemann’s zeta function for s ∈ C with Re s > 1 is defined to be

ζ(s) =
∞∑

n=1

1

ns
=

∏
p prime

(
1 − 1

ps

)−1

.

The infinite product here is called an Euler product. In 1859 Riemann
extended the definition of zeta to a function that is analytic in the whole
complex plane except that it has a simple pole at s = 1. He also showed that
there is an unexpected symmetry known as the functional equation relating
the value of zeta at s and the value at 1 − s. It says

�(s) ≡ π−s/2�
( s

2

)
ζ(s) = �(1 − s). (1.1)

The Riemann hypothesis (RH) says that the non-real zeros of ζ(s) (equiv-
alently those with 0 < Re s < 1) are on the line Re s = 1/2. It is equivalent
to giving the best possible error term in the prime number theorem in formula
(1.2) below. The Riemann hypothesis was checked to 1013th zero (October 12,
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4 Chapter 1

2004) by Xavier Gourdon with the help of Patrick Demichel. See Ed Pegg Jr’s
website for an article called the “Ten trillion zeta zeros”:

http://www.maa.org/editorial/mathgames

You win $1 million if you have a proof of the Riemann hypothesis. See the
Clay Mathematics Institute website:

www.claymath.org

A. Odlyzko has studied the spacings of the zeros and found that they appear
to be the spacings of the eigenvalues of a random Hermitian matrix (a Gaussian
unitary ensemble (GUE)). See Figure 5.5 and the paper on Odlyzko’s website

www.dtc.umn.edu/∼odlyzko/doc/zeta.htm

If one knows the Hadamard product formula for zeta (from a graduate
complex analysis course) as well as the Euler product formula (1.1) above,
one can obtain explicit formulas displaying a relationship between primes and
the zeros of zeta. Such reasoning ultimately led Hadamard and de la Vallée
Poussin to prove the prime number theorem, about 50 years after Riemann’s
paper. The prime number theorem says

#{p = prime|p ≤ x} ∼ x

log x
as x → ∞. (1.2)

Figure 1.1 is a graph of z = |ζ(x + iy)| drawn using Mathematica. The
cover of The Mathematical Intelligencer, vol. 8, no. 4, 1986, shows a similar
graph with the pole at x + iy = 1 and the first six zeros, which are on the
line x = 1/2 of course. The picture was made by D. Asimov and S. Wagon
to accompany their article on the evidence for the Riemann hypothesis.
The Mathematica people will sell you a huge poster of the Riemann zeta
function.

Exercise 1.1 Use Mathematica (or your favorite software) to do a contour
plot of the Riemann zeta function in the same region as that of Figure 1.1.

Hint: Mathematica has a command to give you the Riemann zeta function.
It is Zeta[s].

The explicit formulas mentioned above say that sums over the zeros of the
zeta function are equal to sums over the primes. References are Murty [91] and
Miller and Takloo-Bighash [86].

Many other kinds of zeta function have been investigated since Riemann.
In number theory there is the Dedekind zeta function of an algebraic number
field K , such as K = Q

(√
2

)
, for example. This zeta is an infinite product
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Riemann zeta function and other zetas from number theory 5
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Figure 1.1 Graph of the modulus of the Riemann zeta, i.e., z = |ζ(x + iy)|, showing
the pole at x + iy = 1 and the complex zeros nearest the real axis (all of which are

on the line Re s = 1/2, of course).

over prime ideals p in OK , the ring of algebraic integers of K . For our
example, OK = Z

[√
2

] = {
a + b

√
2
∣∣a, b ∈ Z

}
. The terms in the product are(

1 − Np−s
)−1, where Np = #

(
OK /p

)
. Riemann’s work can be extended to

this zeta function and it can be used to prove the prime ideal theorem. The
RH is unproved but conjectured to be true for the Dedekind zeta function.
Surprisingly, no one has yet proved

(
even in the case of quadratic number

fields, K = Q
(√

m
))

, where m is a non-square integer, that there cannot be
a real zero near 1. Such a possible zero is called a “Siegel zero.” A reference
for this zeta is Lang’s book [73], where it is explained why the non-existence
of Siegel zeros would lead to many nice consequences for number theory.
Figures 1.2–1.5 give summaries of the basic facts about zeta and L-functions
for Q and Q

(√
d

)
. We will find graph theory analogs of many of these facts.

There are also function field zeta functions, where the number field K is
replaced by a finite algebraic extension of Fq(x), the rational functions of one
variable over the finite field Fq with q elements. André Weil proved the RH
for this zeta, which is a rational function of u = q−s . See Rosen [104].
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6 Chapter 1

Dedekind zeta

product over prime ideals
   in OK,

product over primes in Z

zQ (Ö
- 
2 ) (s) = zQ (s)L (s,   )

  ( p) = (2/p), 

product over primes in Z

N  = #(OK /  )

Riemann zeta for F=Q

Dirichlet L-function

Factorization

zQ (s) = Õ(1 - p–s)–1

p

L (s,   ) = Õ
p
  (1 -   ( p)Np–s )–1

zK (s) = Õ(1 - N  –1)–s

Figure 1.2 A summary of facts about the zeta functions and the L-functions
associated with the number fields Q and Q

(√
2

)
. See Figure 1.5 for a

definition of the Legendre symbol
(
2/p

)
.

Functional equations: zK (s) related to zK (1 - s) (Hecke)

h, class number, measures how far OK is from having unique

R, regulator (determinant of logs of units)

w, number of roots of unity in K is 2, when K = Q(Ö
-
2)

factorization; h = 1 for K = Q(Ö
-
2)

R = log(1 + Ö-
2) when K = Q(Ö

-
2)

values at 0: r = r1 + r2 - 1; r1, number of real conjugate fields

of K over Q; r2, number of pairs of complex conjugate fields

of K over Q. If K = Q(Ö
-
2) then r1 = 2, r2 = 0.

z(0)  =  ––1
2
, [s–r zK (s)]|

s = 0
=

 w
–hR

Figure 1.3 What the zeta and L-functions say about the number fields.
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Riemann zeta function and other zetas from number theory 7

Statistics of prime ideals and zeros

From information on zeros of zK (s) obtain
prime ideal theorem in number fields

There are an infinite number of primes p such

Dirichlet theorem: there are an infinite number of
primes p in the progression

a , a + d , a + 2d , a + 3d , ... when g.c.d.(a,d ) = 1.

Riemann hypothesis is still open for number fields;
done for function fields by André Weil:
GRH or ERH: zK (s) = 0 implies Re s = 1 / 2,
assuming s is not real.

that =1.

#{  prime ideal in OK |N   £ x} ~     
x 

    as x ® ¥
log x

æ
ç
è

æ
ç
è

—2
p

Figure 1.4 Statistics of prime ideals and zeros: g.c.d., greatest common divisor;
GRH, generalized Riemann hypothesis; ERH, extended Riemann hypothesis.

Another generalization of Riemann’s zeta function is the Dirichlet
L-function associated with a multiplicative character χ defined on the group of
integers a(mod m) with a relatively prime to m. This function is thought of as
a function on the integers which is 0 unless a and m have no common divisors.
Then one has the Dirichlet L-function, for Re s > 1 defined by

L(s, χ) =
∞∑

n=1

χ(n)

ns
.

This L-function also has an Euler product, analytic continuation, functional
equation, Riemann hypothesis (the extended Riemann hypothesis or ERH).
This function can be used to prove the Dirichlet theorem stating that there
are infinitely many primes in an arithmetic progression of the form a, a + d,

a + 2d, a + 3d, . . . , a + kd, . . . , assuming that a and d are relatively prime.
More generally there are Artin L-functions attached to representations of
Galois groups of normal extensions of number fields. The Artin conjecture,
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8 Chapter 1

Quadratic extensionQuadratic extensionQuadratic extension

pOK =    ¢,     ¹  ¢,

field

g,  # of such  ; f,  degree of over

ring

Assume that m is a square-free integer congruent to
2 or 3 (mod 4).

Decomposition of primes in quadratic extensions

Three cases:

(1) p inert,

g =  2:

e =  2:

(2) p splits,

(3) p ramifies,

Gal(K/F ) = {1, –1} 

Frobenius automorphism

If p does not divide 4m then p has 50% chance of being in case (1)
and 50% chance of being in case (2).

Assume that m is a square-free integer equal to 2 or 3 (mod 4).

(Legendre symbol)

prime ideal finite field

OK /

OK / OF /pOF; efg = 2

É pOKK = Q(Ö
-
m)

K = F (Ö
-
m) /F,

F = Q

F = Q

OF = Z pZ Z /pZ

f =  2: pOK = prime ideal in K, m º¤ x2(mod p)

m º x2(mod p)

p divides 4 mpOK =  2,

-1 in case (1)
in case (2)
in case (3)

1
0

4m
p

æ
ç
è

æ
ç
è

=

OK = Z[Ö
-
m]

ì
ï
þ
ü
ï
î

     

Figure 1.5 Splitting of primes in quadratic extensions. Top, moving left to right, the
four vertical lines represent respectively the number field extension Q

(√
m

)
/Q, the

corresponding rings of integers, the prime ideals, and the finite residue fields. Here f
is the degree of the extension of finite residue fields, g is the number of primes of OK
containing the prime p of Z, and e is the ramification exponent. We have e f g = 2 in

the present case, for which K = Q
(√

m
)
.
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Riemann zeta function and other zetas from number theory 9

as yet unproved, says that if the representation is irreducible and not trivial
(i.e., not identically 1), the L-function is entire. These L-functions were named
for Emil Artin. A reference for Artin L-functions is Lang [73]. We will be
interested in graph theory analogs of Artin L-functions.

Yet another sort of zeta is the Epstein zeta function attached to a quadratic
form

Q[x] =
n∑

i, j=1

qi j xi x j .

We will assume that the qi j are real and that Q is positive definite, meaning that
Q[x] > 0, if x 
= 0. Then the Epstein zeta function is defined for complex s
with Re s > n/2 by:

Z(Q, s) =
∑

a∈Zn−0

Q[a]−s .

As in the case of the Riemann zeta, there is an analytic continuation to all s ∈ C

with a pole at s = n/2. And there is a functional equation relating Z(Q, s) and
Z(Q, n − s). Even when n = 2, the analog of the Riemann hypothesis may be
false for the Epstein zeta function. See Terras [132] for more information on
this zeta function.

If Q[x] ∈ Z for all x ∈ Zn then, defining Nm(Q) = ∣∣{x ∈ Zn|Q[x] = m}∣∣,
we see that Z(Q, s) = ∑

m≥1 Nmm−s, assuming Re s > n/2. Similarly, one
can define zeta functions attached to many lists of numbers such as Nm(Q),

in particular to the Fourier coefficients of modular forms. Classically modular
forms are holomorphic functions on the upper half plane having an invariance
property under a group of fractional linear transformations such as the modular
group SL(2, Z) consisting of 2 × 2 matrices with integer entries and determi-
nant 1. See Miller and Takloo-Bighash [86], Sarnak [109], or Terras [132] for
more information. Now the idea of modular forms has been vastly generalized
and even plays a role in Andrew Wiles’ proof of Fermat’s last theorem.
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2

Ihara zeta function

2.1 The usual hypotheses and some definitions

Our graphs will be finite, connected, and undirected. It will usually be assumed
that they contain no degree-1 vertices, called “leaves” or “hair” or “danglers”.
We will also usually assume that the graphs are not cycles or cycles with hair.
A cycle graph is obtained by arranging the vertices in a circle and connecting
each vertex to the two vertices next to it on the circle. A “bad” graph – meaning
that it does not satisfy the above assumptions – is pictured in Figure 2.1.
We will allow our graphs to have loops and multiple edges between pairs of
vertices.

Why do we make these assumptions? They are necessary hypotheses for
many of the main theorems (for example, the graph theory prime number theo-
rem, formula (2.4)). References for graph theory include Biggs [15], Bollobás
[19], Fan Chung [26], and Cvetković, Doob, and Sachs [32].

A regular graph is a graph each of whose vertices has the same degree,
i.e., the same number of edges coming out of the vertex. A graph is k-regular
if every vertex has degree k. Simple graphs have no loops or multiple edges.
Our graphs need not be regular or simple. A complete graph Kn on n vertices
has all possible edges between its vertices but no loops.

Definition 2.1 Let V denote the vertex set of a graph X with n = |V |.
The adjacency matrix A of X is an n × n matrix with (i, j)th entry

ai j =
⎧⎨
⎩

number of undirected edges connecting vertex i to vertex j, if i 
= j;
2 × number of loops at vertex i , if i = j.

In order to define the Ihara zeta function, we need to define a prime in a
graph X with edge set E having m = |E | elements. To do this, we first direct

10
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Ihara zeta function 11

Figure 2.1 This is an example of a “bad” graph for the theory of zeta functions. For
this graph, there are only finitely many primes (two to be exact), as defined below.

e1

e4

e2

e3

e5

Figure 2.2 We choose an arbitrary orientation of the edges of a graph. Then we label
the inverse edges (edges traveled in the opposite direction) by e j+5 = e−1

j
for j = 1, . . . , 5.

or orient the edges of our graph arbitrarily and label the edges as follows:

e1, . . . , em, em+1 = e−1
1 , . . . , e2m = e−1

m . (2.1)

Here m = |E | is the number of unoriented edges of X and e−1
j = e j+m is the

edge e j with the opposite orientation. See Figure 2.2 for an example.

2.2 Primes in X

A path or walk C = a1 · · · as , where a j is an oriented edge of X , is said to have
a backtrack if a j+1 = a−1

j for some j = 1, . . . , s − 1. A path C = a1 · · · as

is said to have a tail if as = a−1
1 . The length of C = a1 · · · as is s = ν(C).

A closed path or cycle means that the starting vertex is the same as the
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