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Algebraic Number Theory

The first two sections of this introductory chapter provide a brief overview

of several concepts and results from number theory. A detailed exposition of

this material can be found in the books of Lang (1994) and Weil (1995) (cf.

also Chapters 1–3 of [ANT]). It should be noted that, unlike Weil, we state

the results here only for algebraic number fields, although the overwhelming

majority of them also hold for global fields of positive characteristic, i.e., fields

of algebraic functions over a finite field. In §1.3, we present results about group

cohomology, including definitions and statements of the basic properties of

noncommutative cohomology, that are necessary for understanding the rest of

the book. Sections 1.4–1.5 contain basic results on simple algebras over local

and global fields. Special attention is given to the investigation of the multipli-

cative structure of division algebras over such fields, particularly the triviality

of the reduced Whitehead group. Moreover, in §1.5, we collect useful results

on lattices in vector spaces and orders in semisimple algebras.

Throughout the book, we assume familiarity with field theory, particularly

Galois theory (finite and infinite), as well as with elements of topological

algebra, including the theory of profinite groups.

1.1 Algebraic Number Fields, Valuations, and Completions

1.1.1 Arithmetic of Algebraic Number Fields

Let K be an algebraic number field, i.e., a finite extension of the field Q of

rational numbers, and let OK be the ring of integers of K. The ring OK is a clas-

sical object of interest in algebraic number theory. The analysis of its structural

and arithmetic properties, which was initiated by Gauss, Dedekind, Dirich-

let, and others in the nineteenth century, remains an active area of research.
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2 Algebraic Number Theory

From a purely algebraic point of view, the ring O = OK is easy to describe: if

[K : Q] = n, then O is a free Z-module of rank n. Furthermore, for any nonzero

ideal a⊂O, the quotient ring O/a is finite; in particular, any nonzero prime

ideal is maximal. Rings with such properties (i.e., integral domains that are

noetherian, integrally closed, and in which all nonzero prime ideals are maxi-

mal) are known as Dedekind rings. In such a ring, any nonzero ideal a⊂O can

be written uniquely as the product of prime ideals: a = p
α1

1 . . . pαr
r . This prop-

erty generalizes the fundamental theorem of arithmetic on the uniqueness of

factorization of any positive integer into a product of primes. Nevertheless, the

analogy here is only partial: unique factorization of elements of O into prime

elements, generally speaking, does not hold. This fact, which already suggests

that the arithmetic of O can differ significantly from the arithmetic of Z, has

been crucial in shaping algebraic number theory.

The precise degree to which O fails to be a unique factorization domain is

measured by the ideal class group of K, which is defined as follows. Recall

that the fractional ideals of K are O-submodules a of K such that xa⊂O for

a suitable nonzero x in O. Define the product of two fractional ideals a, b⊂O

to be the O-submodule in K generated by the products xy for all x ∈ a, y ∈ b.

Then, with respect to this operation, the set of fractional ideals becomes a

group, called the group of (fractional) ideals of K, which we denote by Id(O).

The principal fractional ideals, i.e., ideals xO where x ∈ K∗, form the sub-

group P(O) ⊂ Id(O), and the quotient group Cl(O) = Id(O)/P(O) is called the

ideal class group of K. A classical result of algebraic number theory is that the

group Cl(O) is always finite; its order, denoted by hK , is the class number of

K. Moreover, the factorization of elements of O into primes is unique if and

only if hK = 1. Another classical result (the Dirichlet Unit Theorem) states that

the group of invertible elements O∗ is finitely generated. These two facts are

the starting point for the arithmetic theory of algebraic groups (cf. Preface to

the Russian edition). However, in generalizing classical arithmetic to algebraic

groups, we cannot appeal to ring-theoretic concepts, but rather need to develop

such number-theoretic constructions as valuations and completions, as well as

adeles, ideles, and others.

1.1.2 Valuations and Completions of Algebraic Number Fields

We define a valuation of a field K to be a function | |v : K → R satisfying the

following conditions for all x, y in K:

(1) |x|v ≥ 0, with |x|v = 0 if and only if x = 0;

(2) |xy|v = |x|v|y|v;

(3) |x + y|v ≤ |x|v + |y|v .
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1.1 Algebraic Number Fields, Valuations, and Completions 3

If, instead of (3), the following stronger condition holds:

(3′) |x + y|v ≤ max{|x|v , |y|v},

the valuation is called non-Archimedean; otherwise, it is called Archimedean.

As an example of a valuation of an arbitrary field K, one can consider

the trivial valuation, which is defined by setting |x|v = 1 for all x in K∗,

and |0|v = 0. We next consider examples of nontrivial valuations of the field

K = Q. The ordinary absolute value | |∞ is obviously an archimedean val-

uation. Furthermore, to each prime p we can associate a non-Archimedean

valuation | |p called the p-adic valuation. Namely, given any α ∈ Q∗, we write

it in the form α = pr · β/γ , where r, β, γ ∈ Z and β and γ are not divisi-

ble by p, and then set |α|p = p−r; we also let |0|p = 0. Sometimes, instead of

the p-adic valuation | |p, it is convenient to use the corresponding logarithmic

valuation v = vp, defined by the formula v(α) = r and v(0) = + ∞, so that

|α|p = p−v(α). Axiomatically v is given by the following conditions:

(1) v(x) is an element of the additive group Z of integers (or more generally

any ordered abelian group) for x 6= 0, and v(0) = ∞;

(2) v(xy) = v(x) + v(y);

(3) v(x + y) ≥ min {v(x), v(y)}.

We shall use both ordinary valuations as well as the corresponding logarith-

mic valuations, and it should be clear from the context to which one we are

referring.

It is worth noting that the examples given earlier actually exhaust all the

nontrivial valuations of Q.

Theorem 1.1 (OSTROWSKI) Any nontrivial valuation of Q is equivalent either

to the archimedean valuation | |∞ or to a p-adic valuation | |p.

(Recall that two valuations | |1 and | |2 on K are called equivalent if they

induce the same topology on K; in this case we have | |1 = | |λ2 for a suitable

real λ > 0.)

Thus, restricting any nontrivial valuation | |v of an algebraic number field K

to Q, we obtain (up to equivalence) either an archimedean valuation | |∞ or a

p-adic valuation (it can be shown that the restriction of a nontrivial valuation

is always nontrivial). This means that any nontrivial valuation of K can be

obtained by extending to K one of the (nontrivial) valuations of Q. On the

other hand, it is known that for any algebraic extension L/K, any valuation | |v
of K can be extended to L, i.e., there exists a valuation | |w of L (denoted w|v)
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4 Algebraic Number Theory

such that |x|w = |x|v for all x in K. In particular, starting with the valuations of

Q, we can obtain all valuations of an arbitrary number field K.

Let us analyze the extension procedure in greater detail. To begin with, it is

helpful to introduce the completion Kv of K with respect to a valuation | |v .

If we consider K as a metric space with respect to the metric arising from

| |v , then its completion Kv is a metric space that, at the same time, is a field

under the natural operations, and is complete with respect to the corresponding

extension of | |v , for which we will use the same notation. It is well known

that if L is an algebraic extension of Kv (and, in general, of any field that is

complete with respect to a valuation | |v), then | |v has a unique extension | |w
to L. Using this, we can derive an explicit formula for | |w, which can be taken

as the definition of | |w. Indeed, since | |v extends uniquely to a valuation of the

algebraic closure K̄v , it follows that |σ (x)|w = |x|w for any x in K̄v and any σ in

Gal(K̄v/Kv). Now let L/Kv be a finite extension of degree n, and let σ1, . . . , σn

be the distinct embeddings of L into K̄v over Kv . Then for the norm NL/K(a) of

an element a ∈ L, we have

|NL/K(a)|v =

∣

∣

∣

∣

∣

n
∏

i = 1

σi(a)

∣

∣

∣

∣

∣

v

=

n
∏

i = 1

|σi(a)|w = |a|nw.

As a result, we obtain the following explicit description of the extension | |w:

|a|w = |NL/K(a)|1/n
v for any a in L. (1.1)

Now let us discuss the procedure of extending valuations to a finite extension

L/K for a number field K. Let | |v be a valuation of K and | |w its unique exten-

sion to the algebraic closure K̄v of Kv . Then for any embedding τ : L → K̄v

over K (and in fact we have n = [L : K] such embeddings), we can define a

valuation u on L by |x|u = |τ (x)|w, which clearly extends the original valu-

ation | |v of K. In this case, the completion Lu can be identified with the

compositum τ (L)Kv . Moreover, any extension may be obtained in this way,

and two embeddings τ1, τ2 : L → K̄v give the same extension if they are con-

jugate over Kv , i.e., if there exists λ in Gal(K̄v/Kv) with τ2 = λτ1. In other

words, if L = K(α) and f (t) is the irreducible polynomial of α over K, then the

extensions | |u1
, . . . , | |ur of | |v over L are in one-to-one correspondence with

the irreducible factors of f over Kv , viz. | |ui corresponds to the embedding

τi : L → K̄v that sends α to a root of fi. Further, the completion Lui is the finite

extension of Kv generated by a root of fi. It follows that

L
⊗

K

Kv ≃

r
∏

i = 1

Lui ; (1.2)

in particular, the degree [L : K] equals the sum of the local degrees [Lui : Kv].
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1.1 Algebraic Number Fields, Valuations, and Completions 5

Moreover, one has the following formulas for the norm and the trace of an

element α in L:

NL/K(a) =
∏

u|v

NLu/Kv
(a),

TrL/K(a) =
∑

u|v

TrLu/Kv
(a).

(1.3)

Thus, the set V K of all pairwise inequivalent valuations of K (or, to put it

more precisely, of the equivalence classes of valuations of K) is the union of

the finite set V K
∞ of the archimedean valuations, which are the extensions to K

of the ordinary absolute value | |∞ on Q, and the set V K
f of non-Archimedean

valuations, obtained as extensions of the p-adic valuation | |p of Q, for each

prime number p. The archimedean valuations correspond to the embeddings

of K into either R or C, in which case they are respectively called real or

complex valuations and the corresponding completions can be identified with

R or C. If v ∈ V K
∞ is a real valuation, then an element α in K is said to

be positive with respect to v if its image under v is a positive number. Let s

(respectively t) denote the number of real (respectively pairwise nonconjugate

complex) embeddings of K. Then s + 2t = n is the degree of L over K.

Non-Archimedean valuations lead to more complicated completions. More

specifically, if v ∈ V K
f is an extension of a p-adic valuation, then the comple-

tion Kv is a finite extension of the field Qp of p-adic numbers. Since Qp is a

locally compact field, it follows that Kv is locally compact (with respect to the

topology determined by the valuation).1 The closure of the ring of integers O

in Kv is the valuation ring

Ov = {a ∈ Kv : |a|v ≤ 1},

sometimes called the ring of v-adic integers. Then Ov is a local ring with

maximal ideal pv = {a ∈ Kv : |a|v < 1}, called the valuation ideal, and group

of invertible elements

Uv = Ov\ pv = {a ∈ Kv : |a|v = 1}.

It is easy to see that the valuation ring of Qp is the ring of p-adic integers Zp,

and the corresponding valuation ideal is pZp. In general, Ov is a free module

over Zp, whose rank equals the degree [Kv : Qp], making Ov an open compact

subring of Kv . Moreover, the powers pi
v of pv form a fundamental system of

1 Henceforth, completions of a number field with respect to nontrivial valuations are called local
fields. It can be shown that the class of local fields thus defined coincides with the class of
nondiscrete locally compact fields of characteristic zero. We note also that we shall use the term
local field primarily in connection with non-Archimedean completions, and to emphasize this
we will use the term non-Archimedean local field.
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6 Algebraic Number Theory

neighborhoods of zero in Ov . The quotient ring kv = Ov/pv is a finite field

and is called the residue field of v. The ideal pv ⊂Ov is principal; any of its

generators π is called a uniformizer and is characterized by the property that

v(π ) is the (positive) generator of the value group Ŵ = v(K∗
v ) ≃ Z. Once we

have fixed a uniformizer π , we can write any a in K∗
v as a = π ru, for a suitable

u ∈ Uv; this yields a continuous isomorphism K∗
v ≃ Z × Uv , given by a 7→

(r, u), where Z is endowed with the discrete topology. Thus, to determine the

structure of K∗
v , we need only describe Uv . It can be shown quite easily that Uv

is a compact group, locally isomorphic to Ov . It follows that Uv ≃ F × Zn
p,

where n = [Kv : Qp], and F is the group of all roots of unity in Kv . Thus K∗
v ≃

Z × F × Zn
p.

Two important concepts associated with field extensions are the ramifi-

cation index and the residual degree. We introduce these concepts first for

the local case. Let Lw/Kv be a finite extension of degree n. Then the value

group Ŵv = v(K∗
v ) has finite index in Ŵw = w(L∗

w), and the corresponding

index e(w|v) = [Ŵw : Ŵv] is called the ramification index. The residue field

ℓw = OLw/PLw for Lw is a finite extension of the residue field kv , and

f (w|v) = [ℓw : kv] is the residual degree. Moreover, e(w|v)f (w|v) = n. An

extension for which e(w|v) = 1 is called unramified, while an extension for

which f (w|v) = 1 is called totally ramified.

Now let L/K be an extension of degree n of number fields. Then for any

valuation v in V K
f and any extension w to L, the ramification index e(w|v)

and residual degree f (w|v) are defined respectively as the ramification index

and residual degree for the extension of the completions Lw/Kv . (One can also

give an intrinsic definition based on the value groups Ŵ̃v = v(K∗), Ŵ̃w = w(L∗),

and the residue fields

k̃w = OK(v)/pK(v), ℓ̃w = OL(w)/PL(w),

where OK(v),OL(w) are the valuation rings of v and w in K and

L, and pK(v),PL(w) are the respective valuation ideals, but in fact

Ŵ̃v = Ŵv , Ŵ̃w = Ŵw, k̃v = kv , and ℓ̃w = ℓw.) As earlier, [Lw : Kv] = e(w|v)f (w|v).

Thus, if w1, . . . , wr are all the extensions of v to L, then

r
∑

i = 1

e(wi|v) f (wi|v) =

r
∑

i = 1

[Lwi : Kv] = n.

Generally speaking, e(wi|v) and f (wi|v) do not have to be equal for diffe-

rent i, but in the important case of a Galois extension L/K, they are indeed the

same for all i. To see this, we let G denote the Galois group of L/K. Then all

extensions w1, . . . , wr of v to L are conjugate under G, i.e., for any i = 1, . . . , r,

there exists σi in G such that wi(x) = w1(σi(x)) for all x in L. It follows that
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1.1 Algebraic Number Fields, Valuations, and Completions 7

e(wi|v) and f (wi|v) are independent of i (we will denote them simply by e and

f ); moreover, the number of different extensions r is the index [G : G(w1)] of

the decomposition group G(w1) = {σ ∈ G : w1(σx) = w1(x) for all x in L}.

Consequently, efr = n, and G(w1) is the Galois group of the corresponding

extension Lw1
/Kv of the completions.

1.1.3 Unramified and Totally Ramified Field Extensions

Let v ∈ V K
f and assume that the corresponding residue field kv is the finite

field Fq with q elements.

Proposition 1.2 For any integer n ≥ 1, there exists a unique unramified

extension L/Kv of degree n. It is generated over Kv by all the (qn − 1)-roots

of unity, and therefore is a Galois extension. The correspondence that sends

σ ∈ Gal(L/Kv) to its reduction σ̄ ∈ Gal(ℓ/kv), where ℓ ≃ Fqn is the residue

field of L, yields an isomorphism of Galois groups Gal(L/Kv) ≃ Gal(ℓ/kv).

In order to define the reduction σ̄ of a given automorphism σ ∈ Gal(L/Kv),

we note that the valuation ring OL and its valuation ideal PL are invariant under

σ . So, σ induces an automorphism of the residue field ℓ = OL/PL which we

call σ̄ . Furthermore, we observe that Gal(ℓ/kv) is a cyclic group generated

by the Frobenius automorphism ϕ(x) = xq for all x in ℓ; the corresponding

element of Gal(L/Kv) will also be called the Frobenius automorphism (of the

extension L/Kv) and will be denoted by Fr(L/Kv).

The following proposition describes the properties of norms in unramified

extensions.

Proposition 1.3 Let L/Kv be an unramified extension, and let Uv and UL

denote the groups of units in Kv and L, respectively. Then Uv = NL/K(UL);

in particular, Uv ⊂ NL/Kv
(L∗).

PROOF: Our argument utilizes the canonical filtration on the group of units,

which is useful in other situations as well. Namely, for any integer i ≥ 1, we

let U
(i)
v = 1 + pi

v and U
(i)
L = 1 + Pi

L. It is easy to see that these sets are open

subgroups which actually form bases of the neighborhoods of the identity in

Uv and UL, respectively. We have the following isomorphisms:

Uv/U (1)
v ≃ k∗

v , U (i)
v /U (i+1)

v ≃ k+
v , for i ≥ 1, (1.4)
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8 Algebraic Number Theory

where the first one is induced by the reduction map a 7→ a (mod pv), and

the second is obtained by fixing a uniformizer π of Kv and then mapping 1 +

π ia 7→ a (mod pv).

Similarly,

UL/U
(1)
L ≃ ℓ∗, U

(i)
L /U

(i+1)
L ≃ ℓ+, for i ≥ 1. (1.5)

Since L/Kv is unramified, π is also a uniformizer of L, so in the rest of the

proof we will assume (as we may) that the second isomorphism in (1.5) is

defined by means of π . For a in UL, we have

NL/Kv
(a) =

∏

σ∈Gal(L/Kv)

σ (a) =
∏

τ∈Gal(ℓ/kv)

τ (ā) = Nℓ/kv
(ā),

where the bar denotes reduction modulo PL.

Thus the norm map induces a homomorphism UL/U
(1)
L → Uv/U

(1)
v , which

in terms of the identifications in (1.4) and (1.5) coincides with Nℓ/kv
. Further,

for any i ≥ 1 and any a in OL, we have

NL/Kv
(1 + π ia) =

∏

σ∈Gal(L/Kv)

σ (1 + π ia) ≡ 1 + π iTrL/Kv
(a) (mod P(i+1)

v ).

It follows that NL/Kv
induces homomorphisms U

(i)
L /U

(i+1)
L → U

(i)
v /U

(i+1)
v ,

which with the identifications in (1.4) and (1.5) become the trace map Trℓ/kv
.

But the norm and trace maps are surjective for extensions of finite fields; there-

fore the group W = NL/Kv
(UL) satisfies Uv = WU

(i)
v for all i ≥ 1. Since U

(i)
v

form a base of neighborhoods of identity, the latter condition means that W

is dense in Uv . On the other hand, since UL is compact and the norm map is

continuous, the subgroup W is closed, and therefore W = Uv .

The proof of Proposition 1.3 also yields

Corollary 1.4 If L/Kv is an unramified extension, then NL/Kv
(U

(i)
L ) = U

(i)
v for

any integer i ≥ 1.

We will need one additional statement about the compatibility of the norm

map in arbitrary extensions with the above filtration.

Proposition 1.5 For any finite extension L/Kv , we have the following:

(1) U
(1)
v ∩ NL/Kv

(L∗) = NL/Kv
(U

(1)
L );

(2) if e is the ramification index of L/Kv , then for any integer i ≥ 1, we have

NL/Kv
(U

(i)
L ) ⊂ U

( j)
v , where j is the smallest integer ≥ i/e.
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1.1 Algebraic Number Fields, Valuations, and Completions 9

PROOF: We begin with the second assertion. Let M be a Galois extension

of Kv containing L. Then for a in L, NL/K(a) =
∏

σ σ (a), where the product

is taken over all embeddings, σ : L →֒ M over Kv . As we noted earlier, v

uniquely extends to a valuation w of M , and consequently w(a) = w(σ (a)) for

any a in L and any σ . In particular, if we choose a uniformizer πL in L, we have

σ (πL) = πLbσ for suitable bσ in UM . It follows that for a = 1 + π i
Lc ∈ U

(i)
L ,

we have

NL/Kv
(a) =

∏

σ

σ (1 + π i
Lc) =

∏

σ

(1 + π i
Lbi

σ σ (c)) ∈ (1 + π i
LOM ) ∩ Kv .

But according to the definition of the ramification index, we have pvOL = Pe
L,

so that π i
LOM ∩ Kv = π i

LOL ∩ Kv = Pi
L ∩ Ov ⊂ p

j
v (where j is chosen as

indicated in the statement of the proposition) and NL/Kv
(a) ∈ U

( j)
v . In par-

ticular, NL/Kv
(U

(1)
L ) ⊂ U

(1)
v , so to prove the first assertion, it suffices to show

that U
(1)
v ∩ NL/Kv

(L∗) ⊂ NL/Kv
(U

(1)
L ). Let a ∈ L∗ be such that NL/Kv

(a) ∈ U
(1)
v .

Then (1.1) implies that a ∈ UL. The isomorphism in (1.5) shows that U
(1)
L is a

maximal pro-p-subgroup in UL for the prime p corresponding to the valuation

v, from which it follows that UL ≃ UL/U
(1)
L ×U

(1)
L . In particular, a = bc where

c ∈ U
(1)
L and b is an element of finite order coprime to p. We have

d = NL/Kv
(b) = NL/Kv

(a)NL/Kv
(c)−1 ∈ U (1)

v .

We now observe that the order of any torsion element in U
(1)
v is a power of p

while the order of d divides that of b, hence is prime to p. It follows that d = 1

and therefore NL/Kv
(a) = NL/Kv

(c) ∈ NL/Kv
(U

(1)
L ).

Let us now return to unramified extensions of Kv . It can be shown that

the composite of unramified extensions is unramified; hence, there exists a

maximal unramified extension Knr
v of Kv , which is Galois, with Gal(Knr

v /Kv)

isomorphic to the Galois group Gal(k̄v/kv) of the algebraic closure of the resi-

due field kv . Thus, it is isomorphic to Ẑ, the profinite completion of the infinite

cyclic group with generator the Frobenius automorphism.

Now, let L/K be a finite extension of a number field K. It is known that

almost all valuations v in V K
f are unramified in L/K, i.e., the corresponding

extension of the completions Lw/Kv is unramified for any w|v; in particular, the

Frobenius automorphism Fr(Lw/Kv) is defined. If L/K is a Galois extension,

then, as we noted earlier, Gal(Lw/Kv) can be identified with the decomposi-

tion subgroup G(w) of the valuation w in the Galois group G = Gal(L/K), so

Fr(Lw/Kv) may be viewed as an element of G.
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10 Algebraic Number Theory

We know that any two valuations w1, w2 extending v are conjugate under

G, from which it follows that the Frobenius automorphisms Fr(Lw/Kv) corre-

sponding to all extensions of v form a conjugacy class F(v) in G. The natural

question arises if all conjugacy classes in G can be obtained in this way. In

other words, for a given σ in G, does there exist a valuation v in V K
f such that

for a suitable w|v, the extension Lw/Kv is unramified with Fr(Lw/Kv) = σ?

Theorem 1.6 (CHEBOTAREV) Let L/K be a finite Galois extension with

Galois group G. Then, for any σ in G, there are infinitely many v in V K
f such

that for suitable w|v, the extension Lw/Kv is unramified and Fr(Lw/Kv) = σ .

In particular, there exist infinitely many v such that Lw = Kv , i.e., L ⊂ Kv .

In fact, Chebotarev determined a quantitative measure (density) of the set of

v in V K
f such that the conjugacy class F(v) coincides with a given conjugacy

class C ⊂G. The density turned out to be |C|/|G| (while the density of the set

V K
f itself is 1). Therefore, Theorem 1.6 (or, more precisely, the correspond-

ing assertion about the density) is called the Chebotarev Density Theorem.

For cyclotomic extensions of K = Q, it is equivalent to Dirichlet’s theorem on

prime numbers in arithmetic progression. We note that the last part of Theorem

1.6 can in fact be proved without using any analytic techniques.

Next, using the geometry of numbers, one proves

Theorem 1.7 (HERMITE) If K/Q is a finite extension that is unramified at all

primes p (i.e., Kv/Qp is unramified for all p and all v|p), then K = Q.

We will not present here a detailed analysis of totally ramified extensions

(in particular, we will not define tamely and wildly ramified extensions), but

rather will limit ourselves to describing them using Eisenstein polynomials.

Recall that a monic polynomial e(t) = tn + an−1tn−1 + · · · + a0 ∈ Kv[t] is

called an Eisenstein polynomial if ai ∈ pv for all i = 0, . . . , n − 1 and a0 /∈ p2
v .

It is well known that an Eisenstein polynomial is irreducible in Kv[t].

Proposition 1.8 If 5 is the root of an Eisenstein polynomial e(t), then

L = Kv[5] is a totally ramified extension of Kv with uniformizer 5. Con-

versely, if L/Kv is totally ramified and 5 is a uniformizer of L, then L = Kv[5]

and the minimal polynomial of 5 over Kv is an Eisenstein polynomial.

Corollary 1.9 If L/Kv is totally ramified, then NL/Kv
(L∗) contains a uni-

formizer of Kv .
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