HELIOPHYSICS

Evolving Solar Activity and the Climates of Space and Earth

Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever increasing rate. The Sun is a magnetically variable star and, for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences.

This volume, the third and final book in a series of three heliophysics texts, focuses on long-term variability from the Sun's decade-long sunspot cycle and considers the evolution of the planetary system from a climatological perspective over its life span of some ten billion years. Topics covered include the dynamo action of stars and planets from their formation to their demise; the evolution of the solar spectral irradiance and the response of Earth's troposphere, ionosphere, and magnetosphere; the internal and external sources of cosmic rays and their modulation by the heliospheric magnetic field; and planetary habitability subject to internal and external drivers of the climate system. In addition to its utility as a textbook, it also constitutes a foundational reference for researchers in the fields of heliophysics, astrophysics, plasma physics, space physics, solar physics, aeronomy, space weather, planetary science, and climate science. Additional online resources, including lecture presentations and other teaching materials, can be accessed at www.cambridge.org/9780521112949.

The three volumes in the Heliophysics series are:

- I Heliophysics: Plasma Physics of the Local Cosmos
- II Heliophysics: Space Storms and Radiation Causes and Effects
- III Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

CAROLUS J. SCHRIJVER is an astrophysicist studying the causes and effects of magnetic activity of the Sun and of stars like the Sun, and the coupling of the Sun's magnetic field into the surrounding heliosphere. He obtained his doctorate in physics and astronomy at the University of Utrecht in the Netherlands in 1986, and has since worked for the University of Colorado, the US National Solar

Observatory, the European Space Agency, and the Royal Academy of Sciences of the Netherlands. Dr Schrijver is currently principal physicist at Lockheed Martin's Advanced Technology Center, where his work focuses primarily on the magnetic field in the solar atmosphere. He is an editor or editorial board member of several journals including *Solar Physics, Astronomical Notices*, and *Living Reviews in Solar Physics*, and has co-edited three other books.

GEORGE L. SISCOE received his Ph.D. in physics from the Massachusetts Institute of Technology (MIT) in 1964. He has since held positions at the California Institute of Technology, MIT, and the University of California, Los Angeles – where he was Professor and Chair of the Department of Atmospheric Sciences. He is currently a Research Professor in the Astronomy Department at Boston University. Professor Siscoe has been a member and chair of numerous international committees and panels and is on the editorial board of the *Journal of Atmospheric and Solar Terrestrial Physics*. He is a Fellow of the American Geophysical Union and the second Van Allen Lecturer of the AGU, 1991. He has authored or co-authored over 300 publications that cover most areas of heliophysics.

HELIOPHYSICS

Evolving Solar Activity and the Climates of Space and Earth

Edited by

CAROLUS J. SCHRIJVER Lockheed Martin Advanced Technology Center

> GEORGE L. SISCOE Boston University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521112949

© Cambridge University Press 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication Data Heliophysics : evolving solar activity and the climates of space and Earth / edited by Carolus J. Schrijver, George L. Siscoe.

p. cm.

ISBN 978-0-521-11294-9 (Hardback) 1. Solar activity. 2. Weather – Effect of solar activity on. 3. Heliosphere (Astrophysics) 4. Solar-terrestrial physics. I. Schrijver, Carolus J. II. Siscoe, George L. III. Title. QB524.H456 2010 523.7–dc22 2010022868

ISBN 978-0-521-11294-9 Hardback

Additional resources for this publication at www.cambridge.org/9780521112949

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Prefc	ice	page xi	
1	Inter	connectedness in heliophysics	1	
	Caro	lus J. Schrijver and George L. Siscoe		
	1.1	Introduction	1	
	1.2	Field-plasma-neutral interaction	2	
	1.3	Transport of angular momentum and energy	3	
	1.4	Dynamo action	4	
	1.5	Extreme events and habitability	6	
	1.6	Our remarkable, remarkably sensitive environment	7	
	1.7	System complexity	9	
2	Long	g-term evolution of magnetic activity of Sun-like stars	11	
	Caro	lus J. Schrijver		
	2.1	A brief history of the Sun: past, present, future	12	
	2.2	Present-day solar activity	14	
	2.3	Stellar activity	31	
	2.4	Spots, faculae, network field, and spectral radiance	40	
	2.5	Activity, rotation, and loss of angular momentum	41	
	2.6	Dynamos: polar spots, small-scale field, and flux dispersal	44	
	2.7	Fully convective stars, brown dwarfs, and beyond	46	
	2.8	The Maunder minimum state of solar and heliospheric		
		activity	46	
3	Formation and early evolution of stars and protoplanetary			
	disks	3	49	
	Lee W. Hartmann			
	3.1	How do stars form?	49	
	3.2	Disks and angular momentum transport	52	
	3.3	Disk winds	55	
	3.4	What are young stars like?	58	

Cambridge University Press
978-0-521-11294-9 - Heliophysics: Evolving Solar Activity and the Climates of Space and Earth
Edited by Carolus J. Schrijver and George L. Siscoe
Frontmatter
More information

vi		Contents	
	3.5	What sets the initial angular momenta of stars?	63
	3.6	Protoplanetary disks and gravity	66
	3.7	Dust disk evolution	69
	3.8	Disk evaporation	72
	3.9	Exoplanets	74
	3.10	Concluding remarks	77
4	Plan	etary habitability on astronomical time scales	79
	Done	ald E. Brownlee	
	4.1	Introduction	79
	4.2	Environmental limits for life as we know it	79
	4.3	The habitable zone and the effects of stellar heat	81
	4.4	The habitable zone and other stellar effects	85
	4.5	Earth before life	86
	4.6	The early history of terrestrial life	89
	4.7	The rise of oxygen	90
	4.8	The evolution and survival of animals	92
	4.9	The decline of carbon dioxide	92
	4.10	The loss of oceans and the end of plate tectonics	94
	4.11	The red giant Sun and the fate of habitable zone planets	95
5	Sola	r internal flows and dynamo action	99
	Mark	k S. Miesch	
	5.1	Magnetism with enthusiasm	99
	5.2	The many faces of solar convection	101
	5.3	Local dynamos and the magnetic carpet	112
	5.4	Global dynamos or "How to build a sunspot"	118
	5.5	Rotational shear and meridional circulation	125
	5.6	Puzzles and prospects	136
		Appendix: Physical characteristics of the solar convection	
		zone	137
6	Mod	eling solar and stellar dynamos	141
	Paul	Charbonneau	
	6.1	The dynamo problem	141
	6.2	Solar dynamo models	143
	6.3	Modeling the solar cycle	159
	6.4	Stellar dynamos	170
-	6.5	Outlook	176
7	Plan	etary neids and dynamos	179
		In K. Christensen	170
	/.1	Introduction	1/9
	1.2	Geomagnetic neid	180

Cambridge University Press	
978-0-521-11294-9 - Heliophysics: Evolving Solar Activity and the Climates of Space and Earth	1
Edited by Carolus J. Schrijver and George L. Siscoe	
Frontmatter	
More information	

		Contents	vii
	7.3	Magnetic fields of other planets and satellites	187
	7.4	Structure and energy budget of planetary interiors	190
	7.5	Some basics of planetary dynamos	195
	7.6	Numerical geodynamo models	199
	7.7	Dynamo models for Mercury and the gas planets	212
	7.8	Outlook	214
8	The	structure and evolution of the three-dimensional	
	solar	: wind	217
	John	T. Gosling	
	8.1	Introduction	217
	8.2	The heliospheric current sheet	218
	8.3	Latitudinal and solar-cycle variations of the solar wind	219
	8.4	Solar wind stream structure	221
	8.5	Evolution of stream structure with heliocentric distance	223
	8.6	Transient disturbances in the solar wind	231
	8.7	The evolving global heliospheric magnetic field	237
	8.8	Long-term changes in the heliospheric magnetic field	241
9	The	heliosphere and cosmic rays	243
	J. R	Jokipii	
	9.1	Introduction	243
	9.2	Observed cosmic-ray time variations	246
	9.3	The physics of heliospheric cosmic-ray temporal	
		variations	251
	9.4	The transport of cosmic-ray particles in the heliosphere	255
	9.5	Solar modulation of galactic cosmic rays	259
	9.6	Sample model simulations using the full transport	
		equation	261
	9.7	The Maunder minimum	264
	9.8	On the heliospheric modulation of galactic cosmic rays	266
	9.9	The sunspot minimum between cycles 23 and 24	267
	9.10	In conclusion	267
10	Sola	r spectral irradiance: measurements and models	269
	Judit	h L. Lean and Thomas N. Woods	
	10.1	Introduction	269
	10.2	Historical perspective	274
	10.3	Measuring solar irradiance and its variations	278
	10.4	Understanding and modeling solar irradiance variations	285
	10.5	Reconstructing historical irradiance changes	290
	10.6	Forecasting irradiance variations	294
	10.7	Summary	295

Cambridge University Press	
978-0-521-11294-9 - Heliophysics: Evolving Solar Activity and the Climates of Space and Earth	
Edited by Carolus J. Schrijver and George L. Siscoe	
Frontmatter	
More information	

viii		Contents	
11	Astro	ophysical influences on planetary climate systems	299
	Jürg	Beer	
	11.1	Introduction	299
	11.2	External influences	300
	11.3	Variability of influences	311
	11.4	Reconstruction of long-term solar variability	319
12	Asses	ssing the Sun-climate relationship in paleoclimate	
	recor	rds	333
	Thom	nas J. Crowley	
	12.1	Introduction	333
	12.2	The instrumental record of climate change	334
	12.3	Results from the climate records for the past 2000 years	337
	12.4	Sun and climate beyond the most recent two millennia	345
	12.5	Discussion and conclusions	347
13	Terre	estrial ionospheres	351
	Stanl	ey C. Solomon	
	13.1	Introduction	351
	13.2	Ionization	353
	13.3	Recombination	355
	13.4	Venus and Mars	358
	13.5	Ionospheres, exoplanets, and signatures of life	361
14	Long	-term evolution of the geospace climate	363
	Jan J	. Sojka	
	14.1	Introduction	363
	14.2	Our experience of geospace climate change	365
	14.3	Geospace climate response to solar photon irradiation	366
	14.4	Geospace climate at earlier terrestrial ages	373
	14.5	Geospace climate response to Earth's magnetic field	
		changes	379
	14.6	Geospace climate response to anthropogenic change	386
15	Wave	es and transport processes in atmospheres and oceans	389
	Richa	urd L. Walterscheid	
	15.1	Atmospheric waves	389
	15.2	Examples of observed atmospheric waves	392
	15.3	Dynamics of planetary waves	395
	15.4	Dynamics of gravity waves	399
	15.5	Quantitative theory of oscillations on a rotating sphere	400
	15.6	Oscillations of an atmosphere	403
	15.7	Forced waves	409
	15.8	Atmospheric waves on other planets	412

Cambridge University Press
978-0-521-11294-9 - Heliophysics: Evolving Solar Activity and the Climates of Space and Earth
Edited by Carolus J. Schrijver and George L. Siscoe
Frontmatter
More information

	Contents	ix
	15.9 Transports and wave forcing	413
	15.10 Climatic effects of waves	414
	15.11 Waves in the ionosphere-thermosphere (IT) system	417
	15.12 Consequences of changing the planetary rotation	422
16	Solar variability, climate, and atmospheric photochemistry	425
	Guy P. Brasseur, Daniel Marsch, and Hauke Schmidt	
	16.1 Introduction	425
	16.2 The climate system	426
	16.3 Atmospheric photochemistry	429
	16.4 Ozone chemistry in the stratosphere	431
	16.5 Response of ozone to solar variability	434
	16.6 Response of atmospheric dynamics to solar variability	441
	16.7 Conclusions	446
	Appendix I Authors and editors	449
	List of illustrations	451
	List of tables	460
	References	461
	Index	488

The plates are to be found between pages 242 and 243.

Preface

Over the past few centuries, our awareness of the couplings between the Sun's variability and the Earth's environment, and perhaps even its climate, has been advancing at an ever increasing rate. The Sun is a magnetically variable star and, for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences and impacts. Today, the successful increase in knowledge of the workings of the Sun's magnetic activity, the recognition of the many physical processes that couple the realm of the Sun to our galaxy, and the insights into the interaction of the solar wind and radiation with the Earth's magnetic field, atmosphere, and climate system have tended to differentiate and insularize the solar, heliospheric, and geospace sub-disciplines of the physics of the local cosmos. In 2001, the NASA Living With a Star (LWS) program was initiated to reverse that trend.

The recognition that there are many connections within the Sun-Earth systems approach has led to the development of an integrated strategic mission plan and a comprehensive research program encompassing all branches of solar, heliospheric, and space physics, and aeronomy. In doing so, we have developed an interdisciplinary community to address this program. This has raised awareness and appreciation of the research priorities and challenges among the LWS scientists and has led to observational and modeling capabilities that span traditional discipline boundaries. The successful initial integration of the LWS sub-disciplines, under the newly coined term "heliophysics", needed to be expanded into the early education of scientists. This series of books is intended to do just that: aiming at the advanced undergraduate and starting graduatelevel students, we attempt to teach heliophysics as a single intellectual discipline. Heliophysics is important both as a discipline that will deepen our understanding of how the Sun drives space weather and climate at Earth and other planets, and also as a discipline that studies universal astrophysical processes with unrivaled resolution and insight possibilities. The goal of this series is to

xii

Preface

provide seed materials for the development of new researchers and new scientific discovery.

Richard Fisher, Director of NASA's Heliophysics Division Madhulika Guhathakurta, NASA/LWS program scientist

Editors' notes

This volume is the third of a three-part series of texts (and an on-line problem set) in which experts discuss many of the topics within the vast field of heliophysics. The texts reference the other volumes by number:

- I Plasma Physics of the Local Cosmos
- II Space Storms and Radiation: Causes and Effects
- III Evolving Solar Activity and the Climates of Space and Earth

The project is guided by the philosophy that the many science areas that together make up heliophysics are founded on common principles and universal processes, which offer complementary perspectives on the physics of our local cosmos. In these three volumes, experts point out and discuss commonalities and complementary perspectives between traditionally separate disciplines within heliophysics.

Many of the chapters in the volumes of this series have a pronounced focus on one or several of the traditional sub-disciplines within heliophysics, but we have tried to give each chapter a trans-disciplinary character that bridges gaps between these sub-disciplines. Some chapters compare stellar and planetary environments, others compare the Sun to its sister stars or compare planets with one another, while others look at general abstractions such as magnetic field topology or magnetohydrodynamic principles that are applicable to several areas.

The vastness of the heliophysics discipline precludes completeness. We hope that our selection of topics helps to inform and educate students and researchers alike, thus stimulating mutual understanding and appreciation of the physics of the universe around us.

The chapters in this volume were authored by the teachers of the heliophysics summer school following the outlines provided by the editors. In the process of integrating these contributions into this volume, the editors have modified or added segments of the text, included cross references, pointed out related segments of text, introduced several figures and moved some others from one chapter to another, and attempted to create a uniform use of terms and symbols (while allowing some differences to exist to remain compatible with the discipline's literature usage). They bear the responsibility for any errors that have been introduced in that editing process.

Preface

xiii

Additional resources

The texts were developed during summer schools for heliophysics held over three successive years at the facilities of the University Corporation for Atmospheric Research in Boulder, Colorado, and funded by the NASA Living With a Star program. Additional information, including text updates, lecture materials, (color) figures and movies, and teaching materials developed for the school can be found at www.vsp.ucar.edu/Heliophysics. Definitions of many solar-terrestrial terms can be found via the index of each volume; a comprehensive list can be found at www.swpc.noaa.gov/info/glossary.htm.

Heliophysics

helio-, prefix, on the Sun and environs; from the Greek *helios*. **physics, n.,** the science of matter and energy and their interactions.

Heliophysics is the

- comprehensive new term for the science of the Sun-solar-system connection.
- exploration, discovery, and understanding of our space environment.
- system science that unites all of the linked phenomena in the region of the cosmos influenced by a star like our Sun.

Heliophysics concentrates on the Sun and its effects on Earth, the other planets of the solar system, and the changing conditions in space. Heliophysics studies the magnetosphere, ionosphere, thermosphere, mesosphere, and upper atmosphere of the Earth and other planets. Heliophysics combines the science of the Sun, corona, heliosphere, and geospace. Heliophysics encompasses cosmic rays and particle acceleration, space weather and radiation, dust and magnetic reconnection, solar activity and stellar cycles, aeronomy and space plasmas, magnetic fields and global change, and the interactions of the solar system with our galaxy.

From NASA's Heliophysics. The New Science of the Sun–Solar-System Connection: Recommended Roadmap for Science and Technology 2005–2035.