Water Transport in Plants under Climatic Stress
Water Transport in Plants under Climatic Stress

edited by
M. Borghetti
Consiglio Nazionale delle Ricerche, Firenze, Italy
(now at the University of Basilicata, Italy)

J. Grace
University of Edinburgh, UK

and
A. Raschi
Consiglio Nazionale delle Ricerche, Firenze, Italy

Proceeding of an International Workshop, held in Vallombrosa, Firenze, Italy
Contents

List of contributors ix

Preface xv

1 Global change and plant water relations 1
 P.G. JARVIS, University of Edinburgh, UK

2 Cavitation. A review: past, present and future 14
 J.A. MILBURN, University of New England, Australia

3 Effect of cavitation on the status of water in plants 27
 J.J. OERTLI, Institute of Plant Sciences, ETH, Zürich, Switzerland

4 Stomatal control of xylem cavitation 41
 H.G. JONES and R.A. SUTHERLAND, Horticultural Research Int., UK

5 Refilling of embolized xylem 52
 J. GRACE, University of Edinburgh, UK

6 Interpretation of the dynamics of plant water potential 63
 M.A. DIXON and R.W. JOHNSON, University of Guelph, Canada

7 A proposed mechanism of freezing and thawing in conifer xylem 75
 D.J. ROBSON1 and J.A. PETTY2, 1University of Wales and
 2University of Aberdeen, UK

8 Winter xylem embolism and spring recovery 86
 in Betula cordifolia, Fagus grandifolia, Abies balsamea
 and Picea rubens
 J. SPERRY, University of Utah, USA

9 Drought resistance strategies and vulnerability to 99
 cavitation of some Mediterranean sclerophyllous trees
 S. SALLEO and M.A. LO GULLO, University of Messina, Italy
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Relations between sap velocity and cavitation in broad-leaved trees</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>M. BORGHETTI(^1,3), P. DE ANGELIS(^2), A. RASCHI(^1),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. E. SCARASCIA MUGNOZZA(^2), R. TOGNETTI(^1), AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. VALENTINI(^2), (^1)Consiglio Nazionale delle Ricerche, Firenze,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^2)University of Tuscia, Viterbo, Italy, (^3)University of Basilicata, Italy</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>NMR and water transport in plants</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>S. RATKOVIC AND G. BACIC, University of Beograd, Yugoslavia</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>The symplast radial-axial water transport in plants: a NMR approach</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>A. V. ANISIMOV, Kazan Institute of Biology, USSR</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Reproductive adaptation by polyembryony of coniferous forest trees under climatic stress as revealed by the metabolism of tritiated water</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>D.J. DURZAN, University of California, Davis, USA</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>A heat balance method for measuring sap flow in small trees</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>C. VALANCogne AND Z. NASR, INRA, Bordeaux, France</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Heat pulse measurements on beech (Fagus sylvatica L.) in relation to weather conditions</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>J. HEIMANN AND W. STICKAN, University of Göttingen, Germany</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Extremely fast changes of xylem water flow rate in tall trees caused by atmospheric, soil and mechanic factors</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>J. ČERMÁK AND J. KUCERA, University of Brno, Czechoslovakia</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Water relations and water transport in coppice vs. single stem Quercus cerris L. trees</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>M. SABBATTI, G.E. SCARASCIA MUGNOZZA, R. VALENTINI AND A. DEL LUNGO, University of Tuscia, Viterbo, Italy</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Environmental control of water flux through Maritime pine (Pinus pinaster Ait).</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>D. LOUSTAU AND A. GRANIER, INRA, France</td>
<td></td>
</tr>
</tbody>
</table>
Contents

19 Evaluation of transpiration of apple trees and measurement of daily course of water flow within the main branches of walnut trees 219
C. VALANCONE1, T. AMEGLIO1, L. ANGELOCCI2 and P. CRUIZIAT1,1 INRA, France, 2ESA Luiz de Queiroz, Brasil

20 Estimating citrus orchard canopy resistance from measurements of actual and potential transpiration 228
Y. COHEN, M. FUCHS and S. MORESHET, The Volcani Center, Israel

21 Stomatal conductance in tomato responds to air humidity 238
I. FERREIRA, University of Lisbon, Portugal

22 Water relations of Canarian laurel forest trees 243
R. LÖSCH, University of Düsseldorf, Germany

23 Watering regime and photosynthetic performance of Gunnera tinctoria (Molina) Mirbel. 247
G.J. CAMPBELL and B.A. OSBORNE, University of Dublin, Ireland

24 Water relations and ultrasound emissions in Douglas-fir seedlings infected with xylem pathogens 256
M. PISANTE1,1, N. MORETTI1 and S. FRISULLO2,1 University of Basilicata, 2University of Bari, Italy.

25 Diurnal fruit shrinkage: a model 261
A. BERGER1 and G. SELLES2,1 CNRS-CEFE, Montpellier, France, 2Comision Nacional de Riego, Chile

26 Analysis of pressure-volume curves by non-linear regression 270
M.N. ANDERSEN1,1, C.R. JENSEN2 and R. LÖSCH3,1 Danish Research Service for Plant and Soil Science and 2Royal Veterinary and Agricultural University, Denmark, and 3University of Dusseldorf, Germany

27 Determination of the amount of apoplastic water and other water relations parameters in conifer needles 274
K. GROSS1 and W. KOCH2,1 University of Freiburg, 2University of München, Germany
<table>
<thead>
<tr>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>The assessment of water status in chilled plants</td>
</tr>
<tr>
<td></td>
<td>A. Pardo, P. Vernieri and F. Tognoni, University of Pisa, Italy</td>
</tr>
<tr>
<td>29</td>
<td>An artificial osmotic cell: a model system for studying phenomena of negative pressure and for determining concentrations of solutes</td>
</tr>
<tr>
<td></td>
<td>H. Heydt and E. Steudle, University of Bayreuth, Germany</td>
</tr>
<tr>
<td>30</td>
<td>Measurement of water and solute uptake into excised roots at positive and negative root pressures</td>
</tr>
<tr>
<td></td>
<td>H. Heydt and E. Steudle, University of Bayreuth, Germany</td>
</tr>
<tr>
<td></td>
<td>Index</td>
</tr>
</tbody>
</table>
List of contributors

T. Ameglio
INRA, Domaine de Crouelle, 63039 Clermont-Ferrand cedex, France.

L. Angelocci
ESA Luiz de Queiroz, USP, Caixa Postal 9, 13400 Piracicaba, SP, Brasil.

A.V. Anisimov
Kazan Institute of Biology, 42111, P.O.B. 30, Kazan, Russia.

M.N. Andersen
Department of Soil Tillage, Soil Physics and Irrigation, Danish Research Service for Plant and Soil Science, Flensborgvej 22, DK-6360, Denmark.

G. Bacic
Dept. of Phys. Chem., Faculty of Science, University of Beograd, Beograd, Yugoslavia.

A. Berger
CNRS - CEFE BP 5051, 34033 Montpellier cedex, France.

M. Borghetti
Istituto Miglioramento Genetico delle Piante Forestali, Consiglio Nazionale delle Ricerche, via S. Bonaventura 13, 50145 Firenze, Italy. Present address: Dipartimento di Produzione Vegetale, University of Basilicata, via. N. Sauro 85, 85100 Potenza, Italy.

G.J. Campbell
Botany Department, University College, Dublin Belfield, Dublin 4, Ireland.
List of contributors

Čermák
Institute of Forest Ecology, University of Agriculturae, Brno, Czechoslovakia.

Y. Cohen
Department of Agricultural Meteorology, A.R.O., The Volcani Center, Bet Dagan, Israel.

P. Cruiziat
INRA, Domaine de Crouelle, 63039 Clermont Ferrand cedex, France.

P. De Angelis
Dipartimento Scienze dell'Ambiente Forestale e delle sue Risorse, University of Tuscia, via S. Camillo De Lellis, 01100 Viterbo, Italy.

A. Del Lungo
Dipartimento Scienze dell'Ambiente Forestale e delle sue Risorse, University of Tuscia, via S. Camillo De Lellis, 01100 Viterbo, Italy.

M.A. Dixon
Department of Horticultural Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1.

D.J. Durzan
Department of Environmental Horticulture, University of California, Davis, CA 95616-8587, USA.

I. Ferreira
DER, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Papada da Ajuda, 1399 Lisboa Codex, Portugal.

S. Frisullo
Dipartimento di Patologia vegetale, University of Bari, sede di Foggia, Foggia, Italy.

M. Fuchs
Department of Agricultural Meteorology, A.R.O., The Volcani Center, Bet Dagan, Israel.
List of contributors

J. Grace
Institute of Ecology and Resource Management, The University of Edinburgh, Darwin Building, Mayfield Road, Edinburgh EH9 3JU, UK.

A. Granier
INRA, Station de Sylviculture et Production, Laboratoire d’Ecopysiologie et de Bioclimatologie, BP 35 Champenoux, 54280 Seichamps, France.

K. Gross
Institute of Silviculture, University of Freiburg, Bertoldstr. 17, D-7800 Freiburg, Germany.

J. Heimann
Institut für Forstbotanik, University of Göttingen, Büsgenweg 2, D-3400 Göttingen, Germany.

H. Heydt
University of Bayreuth, Universitätsstraße 30, D-8580 Bayreuth, Germany.

P.G. Jarvis
Institute of Ecology and Resource Management, The University of Edinburgh, Darwin Building, Mayfield Road, Edinburgh EH9 3JU, UK.

C.R. Jensen

R.W. Johnson
Department of Horticultural Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1.

H.G. Jones
Horticulture Research International, Wellesbourne, Warwick CV35 9EF, UK.

W. Koch
Institute of Forest Botany, University of München, Amalienstr. 52, D-8000 München 40, Germany.
List of contributors

J. Kucera
Institute of Forest Ecology, University of Agriculturae, Brno, Czechoslovakia.

M.A. Lo Gullo
Istituto di Botanica, Università di Messina, v. P. Castelli 2, 98100 Messina, Italy.

R. Lösch

D. Loustau
INRA Station de Recherche Forestiers, Laboratoire d'Ecophysiologie et Nutrition, BP. 45 Gazinet, 33610 Cestas, France.

J.A. Milburn
Department of Botany, University of New England, Armidale, NSW 2351, Australia.

S. Moreshet
Department of Agricultural Meteorology, A.R.O., The Volcani Center, Bet Dagan, Israel.

N. Moretti
Dipartimento di Produzione Vegetale, University of Basilicata, via N. Sauro 85, 85100 Potenza, Italy.

Z. Nasr
INRA Laboratoire de Bioclimatologie, Centre de Bordeaux, Domaine de la Grande Ferrade, BP 81 F3388 Villenave d'Ornon, France.

J.J. Oertli
Institute of Plant Science, ETH, 8092 Zürich, Switzerland.

B.A. Osborne
Botany Department, University College, Dublin Belfield, Dublin 4, Ireland.
List of contributors

A. Pardossi
Dipartimento di Biologia delle Piante Agrarie, Sezione di Orticoltura e Floricoltura, Università di Pisa, Viale delle Piagge 23, 56100 Pisa, Italy.

J.A. Petty
Department of Forestry, University of Aberdeen, St. Machar Drive, Aberdeen AB9 2UD, UK.

M. Pisante
Dipartimento di Produzione Vegetale, University of Basilicata, via N. Sauro 85, 85100 Potenza, Italy.

A. Raschi
Istituto di Analisi Ambientale e Telerilevamento applicati all'Agricoltura, Consiglio Nazionale delle Ricerche, p.le delle Cascine 18, 50144 Firenze, Italy.

S. Ratkovic

D.J. Robson
The BioComposites Centre, University of Wales, Bangor, Gwynedd, LL57 2UW, UK.

M. Sabatti
Dipartimento Scienze dell'Ambiente Forestale e delle sue Risorse, University of Tuscia, via S. Camillo De Lellis, 01100 Viterbo, Italy.

S. Salleo
Istituto di Botanica, Università di Messina, via P. Castelli 2, 98100 Messina, Italy.

G.E. Scarascia Mugnozza
Dipartimento Scienze dell'ambiente Forestale e delle sue Risorse, University of Tuscia, via S. Camillo De Lellis, 01100 Viterbo, Italy.

G. Selles
Comision Nacional de Riego. Teatinos 50/5to Piso, Santiago, Chile.
J. Sperry
Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.

E. Steudle
Universität Bayreuth, Universitätsstraße 30, D-8580 Bayreuth, Germany.

W. Stickan
Systematisch-Geobotanisches Institut, Universität Göttingen, Untere Karspüle 2, D-3400 Göttingen, Germany.

R.A. Sutherland
Horticultural Research International, Wellesbourne, Warwick CV35 9EF, UK.

R. Tognetti
Istituto Miglioramento Genetico delle Piante Forestali, Consiglio Nazionale delle Ricerche, via S. Bonaventura 13, 50145 Firenze, Italy.

F. Tognoni
Dipartimento di Biologia delle Piante Agrarie, Sezione di Orticolture e Floricoltura, Università di Pisa, Viale delle Piagge 23, 56100 Pisa, Italy.

C. Valecogne
Laboratoire de Bioclimatologie, INRA, Centre de Bordeaux, Domaine de la Grande Ferrade, BP 81 F3388 Villenave d'Ornon, France.

R. Valentini
Dipartimento Scienze dell'Ambiente Forestale e delle sue Risorse, University of Tuscia, via S. Camillo De Lellis, 01100 Viterbo, Italy.

P. Vernieri
Dipartimento di Biologia delle Piante Agrarie, Sezione di Orticolture e Floricoltura, Università di Pisa, Viale delle Piagge 23, 56100 Pisa, Italy.
Editors' preface

An important International Workshop was held at the Vallombrosa Abbey, in the Forest of Vallombrosa, near Firenze, Italy, 29-31 May 1990. Eighty scientists participated in a discussion of water transport in plants. There have been many international workshops and conferences on plant-water relations but this was the first to focus on the failure of the hydraulic pathway within the xylem. It was possible to assemble practically all those scientists, worldwide, who have worked on the cavitation of water in the transport system. This phenomenon of cavitation, which was discovered only in the 1960s, is now being recognized as being widespread. It occurs in all the species of vascular plant so far examined, and can usually be detected on any summer's day. Its ecological significance is a matter for further research, but many consider that embolism in the xylem predisposes plants to further water stress, so that cavitation and refilling may hold the key to vegetational response to climatic warming and drying.

At the meeting it was resolved to prepare a manuscript for publication and this process (with peer review and revision) took place during 1991.

Papers presented fall naturally into several subject groupings:
(i) analysis of the mechanism and pathway of water flow in the plant,
(ii) the natural repair of the hydraulic continuum, whereby emboli are redissolved in water,
(iii) survey of methodologies including acoustic detection of cavitation, thermoelectric techniques and nuclear magnetic resonance, and
(iv) case studies, examples of current work, mainly in the hot dry climates of the southern Mediterranean.

The workshop was sponsored by local, national and European organisations, without which the meeting would not have taken place. These were the Commission of the European Community, the Consiglio Nazionale delle Ricerche, the Society of Experimental Biology, the British Ecological Society and the Centro Studi per l'Informatica in Agricoltura (Firenze). In addition we received valuable support from the Vallombrosa Abbey, Comune di Reggello and Fondazione Scienza per l'Ambiente.

We are particularly grateful to S. Bianchi, P. Cioni, J. Gallori and F. Giannini who worked to ensure the smooth running of the workshop and, finally, to Dr. R. Tognetti who assisted us tirelessly in the editorial work.