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Introduction

This volume is a collection of papers on hidden Markov processes (HMPs)
involving connections with symbolic dynamics and statistical mechanics. The
subject was the focus of a five-day workshop held at the Banff Interna-
tional Research Station (BIRS) in October 2007, which brought together thirty
mathematicians, computer scientists, and electrical engineers from institutions
throughout the world. Most of the papers in this volume are based either on
work presented at the workshop or on problems posed at the workshop.

From one point of view, an HMP is a stochastic process obtained as the noisy
observation process of a finite-state Markov chain; a simple example is a binary
Markov chain observed in binary symmetric noise, i.e., each symbol (0 or 1) in
a binary state sequence generated by a two-state Markov chain may be flipped
with some small probability, independently from time instant to time instant. In
another (essentially equivalent) viewpoint, an HMP is a process obtained from a
finite-state Markov chain by partitioning its state set into groups and completely
“hiding” the distinction among states within each group; more precisely, there
is a deterministic function on the states of the Markov chain, and the HMP is
the process obtained by observing the sequences of function values rather than
sequences of states (and hence such a process is sometimes called a “function

of a Markov chain”).

HMPs are encountered in an enormous variety of applications involving
phenomena observed in the presence of noise. These range from speech and
optical character recognition, through target tracking, to biomolecular sequence
analysis. HMPs are also important objects of study in their own right in many
areas of pure and applied mathematics, including information theory, probabil-
ity theory, and dynamical systems. An excellent survey of HMPs can be found

in [3].

A central problem in the subject is computation of the entropy rate (some-
times known simply as entropy) of an HMP. The entropy rate of a process can
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2 Introduction

be regarded as the asymptotic exponential growth rate of the number of differ-
ent sequences that can be generated by the process (after one discards certain
sequences of abnormally small probability). The entropy rate is a measure of
randomness of a process. It is one of the most fundamental concepts in infor-
mation theory, because it also measures the incompressibility of a process. It is
also closely related to important quantities in statistical mechanics [4].

There is a very simple closed-form formula for the entropy rate of a finite-
state Markov chain, but there is no such simple formula for entropy rate of HMPs
except in very special cases. However, more than fifty years ago Blackwell [2]
discovered an expression for the entropy rate of an HMP as the integral of a
very simple integrand with respect to a typically very complicated (and usually
singular) measure on a simplex; his measure is the stationary measure for a
continuous-valued Markov chain on the simplex. In some sense, Blackwell’s
formula demonstrates that computation of entropy rate of HMPs is intrinsically
complicated. While his formula has been used to help estimate the entropy rate,
it is primarily of theoretical interest. Shortly after publication of Blackwell’s
paper, Birch [1] discovered excellent general upper and lower bounds on the
entropy rate. However, until recently, there had been very little progress, with
only a few papers on the subject.

Closely related is the problem of computing the capacity of an information
channel, especially a channel with memory. Roughly speaking, the capacity of
achannel is defined as the maximum of a quantity known as mutual information
rate between the input and corresponding output processes, over all possible
input processes. For some channels, this amounts to maximizing the entropy
rate of the output process, which would be an HMP if the input process were
Markov.

Recently, the entropy rate problem and related problems have received a
good deal of attention from people working in many different areas, primarily
information theory, dynamical systems, statistical mechanics, and probabil-
ity theory. In particular, there is considerable interest in symbolic dynamics on
problems regarding the properties of images and pre-images of Markov and hid-
den Markov processes via factor maps between symbolic dynamical systems.
These issues have also been studied in the wider context of Gibbs measures.

The papers in this volume address these and related themes.

Computation of entropy rate is the explicit focus of the papers by Ordentlich
and Weissman, Peres and Quas, and Pollicott. Ordentlich and Weissman develop
an alternative to Blackwell’s continuous-valued Markov chain and use it to
obtain improved bounds in various noise regimes over the binary symmetric
channel; they also compare various approximation schemes via an analysis
of complexity versus precision. Peres and Quas obtain explicit asymptotics
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Introduction 3

for the entropy rate of HMPs obtained as the noisy observation processes of
Markov chains observed in a certain noise regime (“rare transitions”) over
the binary symmetric channel, thereby solving an open problem posed in the
workshop. Pollicott develops a new numerical technique for approximating
entropy rate, using ideas from dynamical systems and statistical mechanics to
obtain approximations which are provably superexponentially convergent in
several cases.

The paper by Han, Marcus, and Peres develops a complex version of the
Hilbert metric on the real simplex in order to obtain estimates of the domain
of analyticity of entropy rate as a function of the underlying Markov chain
transition probabilities.

Pfister focuses on computation of capacity for certain finite-state channels.
He develops a formula for the derivative of entropy rate as a function of
the underlying Markov chain and applies this to obtain estimates on mutual
information rates for the channels.

Boyle and Petersen give an in-depth survey of results on hidden Markov
processes relating to symbolic dynamics and connections with probability,
automata theory, and thermodynamics. The survey contains many results and
open problems regarding hidden Markov processes and factor maps. Chazottes
and Ugalde show that under certain factor maps the image of every Gibbs mea-
sure, defined by a certain type of potential function @, is also a Gibbs measure,
with a potential function of a type determined by regularity properties of ® and
the factor map. Pollicott and Kempton obtain similar results for Gibbs measures
defined by arelated class of potential functions. Verbitskiy explores the relation-
ship between HMPs and the thermodynamic formalism. He surveys work on the
problem of computing the decay rate of the conditional probability of the present
given the past, computation of entropy rate, identification of a potential for a
given measure known to be Gibbs, and relations to Markov random field models.

We thank the Banff International Research Station and its constituent insti-
tutions for running and supporting the workshop; the anonymous referees for
their careful reading and reviewing of the papers; and the staff of Cambridge
University Press for their expert handling of the publication.
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Abstract. In an effort to aid communication among different fields and perhaps
facilitate progress on problems common to all of them, this article discusses
hidden Markov processes from several viewpoints, especially that of symbolic
dynamics, where they are known as sofic measures or continuous shift-commuting
images of Markov measures. It provides background, describes known tools and
methods, surveys some of the literature, and proposes several open problems.

1 Introduction

Symbolic dynamics is the study of shift (and other) transformations on spaces
of infinite sequences or arrays of symbols and maps between such systems. A
symbolic dynamical system, with a shift-invariant measure, corresponds to a
stationary stochastic process. In the setting of information theory, such a system
amounts to a collection of messages. Markov measures and hidden Markov
measures, also called sofic measures, on symbolic dynamical systems have the
desirable property of being determined by a finite set of data. But not all of their
properties, for example the entropy, can be determined by finite algorithms. This
article surveys some of the known and unknown properties of hidden Markov
measures that are of special interest from the viewpoint of symbolic dynamics.
To keep the article self contained, necessary background and related concepts
are reviewed briefly. More can be found in [47, 56, 55, 71].

Entropy of Hidden Markov Processes and Connections to Dynamical Systems: Papers from the
Banff International Research Station Workshop, ed. B. Marcus, K. Petersen, and T. Weissman.
Published by Cambridge University Press. © Cambridge University Press 2011.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521111133
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-11113-3 - Entropy of Hidden Markov Processes and Connections to Dynamical

Systems: Papers from the Banff International Research Station Workshop
Edited by Brian Marcus, Karl Petersen and Tsachy Weissman

Excerpt

More information

6 M. Boyle & K. Petersen

We discuss methods and tools that have been useful in the study of symbolic
systems, measures supported on them, and maps between them. Throughout,
we state several problems that we believe to be open and meaningful for further
progress. We review a swath of the complicated literature starting around 1960
that deals with the problem of recognizing hidden Markov measures, as closely
related ideas were repeatedly rediscovered in varying settings and with varying
degrees of generality or practicality. Our focus is on the probability papers that
relate most closely to symbolic dynamics. We have left out much of the literature
concerning probabilistic and linear automata and control, but we have tried to
include the main ideas relevant to our problems. Some of the explanations that
we give and connections that we draw are new, as are some results near the end
of the article. In Section 5.2 we give bounds on the possible order (memory) if
a given sofic measure is in fact a Markov measure, with the consequence that in
some situations there is an algorithm for determining whether a hidden Markov
measure is Markov. In Section 6.3 we show that every factor map is hidden
Markovian, in the sense that every hidden Markov measure on an irreducible

sofic subshift lifts to a fully supported hidden Markov measure.

2 Subshift background
2.1 Subshifts

Let A be a set, usually finite or sometimes countable, which we consider to be

an alphabet of symbols.

Ar=[ A
k=0

(D

denotes the set of all finite blocks or words with entries from .4, including the
empty word, €; A" denotes the set of all nonempty words in A*; Z denotes
the integers, and Z, denotes the nonnegative integers. Let Q(A) = A% and
Q*(A) =A%+ denote the sets of all two- or one-sided sequences with entries
from A. If A={0,1,...,d — 1} for some integer d > 1, we denote Q2 (A) by Q
and Q1 (A) by Qj. Each of these spaces is a metric space with respect to the

metric defined by setting for x #y

k(r,y)=min{ljl:x; £y} and  d(x,y)=e KO,

2

For i <j and x € Q(A), we denote by x[i,j] the block or word x;x;4 - - -x;. If

w=uwy---w,—1 is a block of length n, we define

Co(w)={yeQ(A) :y[0,n—1]=0}

3)
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Symbolic dynamics 7

and, forieZ,
Cilw)={yeQA) :y[i,i+n—1]=w}. )

The cylinder sets C;(w),w € A*,i € Z, are open and closed and form a base for
the topology of ©2(A).

In this article, a topological dynamical system is a continuous self map of
a compact metrizable space. The shift transformation o : Q4 — 4 is defined
by (0x); = x4 for all i. On , the maps ¢ and o ~! are one-to-one, onto, and
continuous. The pair (£2;,0) forms a topological dynamical system which is
called the full d-shift.

If X is a closed o-invariant subset of €24, then the topological dynamical
system (X ,0) is called a subshift. In this article, with “o-invariant” we include
the requirement that the restriction of the shift be surjective. Sometimes we
denote a subshift (X,o0) by only X, the shift map being understood implicitly.
When dealing with several subshifts, their possibly different alphabets will be
denoted by A(X), A(Y), etc.

The language L£(X) of the subshift X is the set of all finite words or blocks
that occur as consecutive strings

x[i, ik —1]=XXiq1 -+ Xigk—1 5

in the infinite sequences x which comprise X. Denote by |w| the length of a
string w. Then

LX)={weA*:there are neZ,y € X suchthat w =y, Ynpjwj—-1}.- (6)

Languages of (two-sided) subshifts are characterized by being extractive (or
factorial) (which means that every subword of any word in the language is also
in the language) and insertive (or extendable) (which means that every word in
the language extends on both sides to a longer word in the language).

For each subshift (X,o0) of (24,0) there is a set F(X) of finite “forbidden”
words such that

X ={xeQg:foreachi<j,xixipi---x ¢ F(X)}. @)

A shift of finite type (SFT) is a subshift (X,o) of some (22 (A),o) for which it
is possible to choose the set F(X) of forbidden words defining X to be finite.
(The choice of the set F(X) is not uniquely determined.) The SFT is n-step if
it is possible to choose the set of words in F(X) to have length at most n+ 1.
We will sometimes use “SFT” as an adjective describing a dynamical system.
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8 M. Boyle & K. Petersen

One-step shifts of finite type may be defined by 0, 1 transition matrices. Let
M be a d x d matrix with rows and columns indexed by A={0,1,...,d — 1}
and entries from {0, 1}. Define

Qu ={we A% for all n € Z,M (w,,wp41) = 1}. (8)

These were called topological Markov chains by Parry [51]. A topological
Markov chain €2, may be viewed as a vertex shift: its alphabet may be identified
with the vertex set of a finite directed graph such that there is an edge from vertex
i to vertex j if and only if M (i,j) = 1. (A square matrix with nonnegative integer
entries can similarly be viewed as defining an edge shift, but we will not need
edge shifts in this article.) A topological Markov chain with transition matrix M
as above is called irreducible if for all i,j € A there is k such that M*(i,j) > 0.
Irreducibility corresponds to the associated graph being strongly connected.

2.2 Sliding block codes

Let (X,0) and (Y,0) be subshifts on alphabets .4, A’, respectively. Fork €N, a
k-block code is amap m : X — Y for which there are m,n>0 withk=m+n+1
and a function 7 : A* — A’ such that

(7Tx)i =70 (Xjm =+ X+ Xipn)- )

We will say that 7 is a block code if it is a k-block code for some k.

Theorem 2.1. (Curtis—Hedlund-Lyndon theorem) [33] For subshifts (X,0)
and (Y,0), amap ¥ : X — Y is continuous and commutes with the shift (Yo =
o) if and only if it is a block code.

If (X,T) and (Y,S) are topological dynamical systems, then a factor map is
a continuous onto map 7 : X — Y such that 7 =Sx. (Y,S) is called a factor
of (X,T), and (X,T) is called an extension of (Y,S). A one-to-one factor map
is called an isomorphism or topological conjugacy.

Given a subshift (X,0), r€Z, and k € Z, there is a block code w =7, 4
onto the subshift which is the k-block presentation of (X ,o), by the rule

(mx)i=xli+r,i+r+1,...,i+r+k—1] forallxeX. (10)

Here 7 is a topological conjugacy between (X, o) and its image (X ¥, ') which
is a subshift of the full shift on the alphabet A

Two factor maps ¢, are topologically equivalent if there exist topological
conjugacies «, 8 such that a¢B = . In particular, if ¢ is a block code with
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Symbolic dynamics 9

(¢x)p determined by x[—m,n] and k =m+n+1 and  is the composition
(nm,k)_' followed by ¢, then ¥ is a one-block code (i.e., (¥ x)o =¥ (xp)) which
is topologically equivalent to ¢.

A sofic shift is a subshift which is the image of a shift of finite type under
a factor map. A sofic shift Y is irreducible if it is the image of an irreducible
shift of finite type under a factor map. (Equivalently, ¥ contains a point with
a dense forward orbit. Equivalently, Y contains a point with a dense orbit, and
the periodic points of Y are dense.)

2.3 Measures

Given a subshift (X,o0), we denote by M (X) the set of o-invariant Borel
probability measures on X . These are the measures for which the coordinate
projections m,(x) =x, for x € X ,n € Z form a two-sided finite-state stationary
stochastic process.

Let P be a d x d stochastic matrix and p a stochastic row vector such that
pP =p. (If P is irreducible, then p is unique.) Define a d x d matrix M with
entries from {0, 1} by M (i,j) =1 if and only if P(i,j) > 0. Then P determines a
one-step stationary (o-invariant) Markov measure p on the shift of finite type
QM by

n(Ci(wli,jN) =uly € Qu :yli,j1= wiwipr - o)} an
=p(w)P(wi,wit1) - Plwj—1, ;)
(by the Kolmogorov extension theorem [6, p. 3ff.]).

For k > 1, we say that a measure y € M(X) is k-step Markov (or more simply

k-Markov) if for all i >0 and all j >k —1 and all x in X,

n(Co(x[0,iD)|Co(x[—/, —11)) = u(Co ([0, iDICo(x[—k, —1D)).  (12)

A measure is one-step Markov if and only if it is determined by a pair (p,P) as
above. A measure is k-step Markov if and only if its image under the topological
conjugacy taking (X,o) to its k-block presentation is one-step Markov. We say
that a measure is Markov if it is k-step Markov for some k. The set of k-step
Markov measures is denoted by M, (adding an optional argument to specify
the system or transformation if necessary.) From here on, “Markov” means
“shift-invariant Markov with full support”, that is, every nonempty cylinder
subset of X has positive measure. With this convention, a Markov measure
with defining matrix P is ergodic if and only if P is irreducible.

A probabilist might ask for motivation for bringing in the machinery of topo-
logical and dynamical systems when we want to study a stationary stochastic
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10 M. Boyle & K. Petersen

process. First, looking at M(X) allows us to consider and compare many
measures in a common setting. By relating them to continuous functions
(“thermodynamics” — see Section 3.2 below) we may find some distinguished
measures, for example maximal ones in terms of some variational problem.

Second, by topological conjugacy we might be able to simplify a

situation

conceptually; for example, many problems involving block codes reduce to
problems involving just one-block codes. And, third, with topological and

dynamical ideas we might see (and know to look for) some structure or

common

features, such as invariants of topological conjugacy, behind the complications

of a particular example.

2.4 Hidden Markov (sofic) measures

If (X,0) and (Y,0) are subshifts and 7 : X — Y is a sliding block code (factor
map), then each measure u € M (X) determines a measure 7 € M(Y) by

() (E)=u(r~'E) for each measurable EC Y.

(Some authors write 7, or pm ~! for 7 .)

(13)

If X is SFT, u is a Markov measure on X, and 7 : X — Y is a sliding
block code, then 7t 4 on Y is called a hidden Markov measure or sofic measure.
(Various other names, such as “submarkov” and “function of a Markov chain”,
have also been used for such a measure or the associated stochastic process.)
Thus, 7w is a convex combination of images of ergodic Markov measures.
From here on, unless otherwise indicated, the domain of a Markov measure is
assumed to be an irreducible SFT, and the Markov measure is assumed to have
full support (and thus by irreducibility be ergodic). Likewise, unless otherwise

indicated, a sofic measure is assumed to have full support and to be the

image of

an ergodic Markov measure. Then the sofic measure is ergodic and it is defined
on an irreducible sofic subshift. Hidden Markov measures provide a natural
way to model systems governed by chance in which dependence on the past of
probabilities of future events is limited (or at least decays, so that approximation

by Markov measures may be reasonable) and complete knowledge of
of the system may not be possible.

the state

Hidden Markov processes are often defined as probabilistic functions of

Markov chains (see for example [23]), but by enlarging the state sp

ace each

such process can be represented as a deterministic function of a Markov chain,

such as we consider here (see [3]).
The definition of hidden Markov measure raises several questions.
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