HELIOPHYSICS: PLASMA PHYSICS OF THE LOCAL COSMOS

Edited by Carolus J. Schrijver and George L. Siscoe

Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's riability, the surrounding heliosphere, and the environment and climate of the planets. er the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever increasing rate. The Sun a magnetically variable star and, for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences.

This volume, the first in a series of three heliophysics texts, integrates these diverse topics the first time as a coherent intellectual discipline, providing a core resource for courses and seminars at the advanced undergraduate and graduate level. It emphasizes the physical processes that couple the realm of the Sun to that of our planet and provides insights into

interaction of the solar wind and radiation with the Earth's magnetic field, atmosphere, and climate system. In addition to its utility as a textbook, it also constitutes a foundational reference for researchers in the fields of heliophysics, astrophysics, plasma physics, space

ysics, solar physics, aeronomy, space weather, planetary science, and climate science. Additional online resources, including lecture presentations and other teaching materials, can be accessed at www.cambridge.org/9780521110617.

CAROLUS J. SCHRIJVER is an astrophysicist studying the causes and effects of magnetic activity of the Sun, and of stars like the Sun, and the coupling of the Sun's magnetic field into the surrounding heliosphere. He obtained his doctorate in physics and astronomy at the University of Utrecht in The Netherlands in 1986 and has since worked for the University of Colorado, the US National Solar Observatory, the European Space Agency, and the Royal Academy of Sciences of the Netherlands. Dr Schrijver is currently principal physicist at Lockheed Martin's Advanced Technology Center, where his work focuses primarily on magnetic field in the solar atmosphere. He is an editor or editorial board member of veral journals including *Solar Physics, Astronomical Notices*, and *Living Reviews in Solar*

Physics, and has co-edited three other books.

GEORGE L. SISCOE received his Ph.D. in physics from the Massachusetts Institute of echnology (MIT) in 1964. He has since held positions at the California Institute of echnology, MIT, and the University of California, Los Angeles – where he was Professor and Chair of the Department of Atmospheric Sciences. He is currently a Research Professor the Astronomy Department at Boston University. Professor Siscoe has been a member

and chair of numerous international committees and panels and is on the editorial board of Journal of Atmospheric and Solar Terrestrial Physics. He is a Fellow of the American

HELIOPHYSICS: PLASMA PHYSICS OF THE LOCAL COSMOS

Edited by

CAROLUS J. SCHRIJVER Lockheed Martin Advanced Technology Center

> GEORGE L. SISCOE Boston University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521110617

© Cambridge University Press 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-11061-7 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

eface		<i>page</i> ix				
Prologue						
Caro	Carolus J. Schrijver and George L. Siscoe					
1.1	A voyage through the local cosmos	1				
1.2	Magnetic field: a unifying force within heliophysics	15				
1.3	The three-volume series	19				
1.4	Additional resources	19				
1.5	Editors' note	20				
Intro	oduction to heliophysics	21				
Thor	nas J. Bogdan					
2.1	Preamble	21				
2.2	What is heliophysics?	22				
2.3	The language of heliophysics	24				
2.4	The creation and annihilation of magnetic field	29				
2.5	Magnetic coupling	31				
2.6	Spontaneous formation of discontinuities	32				
2.7	Explosive energy conversion	34				
2.8	Generation of penetrating radiation	36				
2.9	Concluding thoughts	40				
Crea	tion and destruction of magnetic field	42				
Matt	hias Rempel					
3.1	Introduction – magnetic fields in the universe	42				
3.2	Magnetohydrodynamics	44				
3.3	The dynamo problem	50				
3.4	Mean-field theory	57				
3.5	Limitations of mean-field approximation, 3D simulations	71				

vi		Contents	
4	Magn	etic field topology	77
-		W. Longcope	
	4.1	Magnetic field lines	78
	4.2	Regions of different topology	91
	4.3	Magnetic helicity	99
5	Magn	etic reconnection	113
	Terry	G. Forbes	
	5.1	Preamble	113
	5.2	Basic concepts	113
	5.3	Reconnection in two dimensions	122
	5.4	Reconnection in three dimensions	131
	5.5	Topics for future research	137
6	Struc	tures of the magnetic field	139
	Mark	B. Moldwin, George L. Siscoe, and Carolus J. Schrijver	
	6.1	Preamble	139
	6.2	Current sheets in cosmic plasmas	140
	6.3	Magnetic flux tubes	145
	6.4	Definition of a flux tube	146
	6.5	Definition of a flux rope	149
	6.6	Flux ropes at other planets	156
	6.7	Magnetic cells	159
	6.8	Summary	161
7	Turbı	ilence in space plasmas	163
	Charl	es W. Smith	
	7.1	Preamble	163
	7.2	Introduction	164
	7.3	What observations characterize the solar wind?	167
	7.4	The Navier–Stokes equation and hydrodynamic turbulence	172
	7.5	Magnetohydrodynamic fluid turbulence	176
	7.6	The spectrum of interplanetary turbulence	180
	7.7	Non-Gaussianity in turbulent space plasmas	190
	7.8	Turbulence in the solar corona and solar wind acceleration	191
	7.9	Interstellar turbulence	193
	7.10	Conclusion	194
8		olar atmosphere	195
	00	H. Hansteen	
	8.1	Introduction	195
	8.2	The photosphere	200
	8.3	The high- β chromosphere	204

	Contents	V
8.5	Forward modeling of the outer solar atmosphere	21
8.6	The way forward	22
Stella	r winds and magnetic fields	22
Viggo	H. Hansteen	
9.1	A pocket history	22
9.2	The Parker spiral	22
9.3	Some solar wind properties	23
9.4	A pocket history, continued	23
9.5	An interlude with Alfvén waves	23
9.6	The coronal helium abundance and the proton flux	23
9.7	The energy budget of the solar wind	23
9.8	A simple experiment	24
9.9	Solar wind models that include the chromosphere	24
9.10	Discussion and conclusions	24
Fund	amentals of planetary magnetospheres	25
	is M. Vasyliūnas	
•	Introduction	25
10.2	Definitions and classifications	2
10.3	Interaction of solar wind with a planetary magnetic field	25
	Plasma flow and magnetosphere-ionosphere interaction	20
	Plasma sources and transport processes	27
10.6	Scaling relations for magnetospheres	28
Solar	-wind-magnetosphere coupling: an MHD perspective	29
Frank	R. Toffoletto and George L. Siscoe	
11.1	Introduction	29
11.2	Global MHD models	29
11.3	The solar wind at Earth	30
11.4	Magnetosheath modeling	30
11.5	Forces on the magnetosphere	31
11.6	Magnetospheric convection	3
11.7	Energy flow in the magnetosphere	32
11.8	Summary	32
On th	e ionosphere and chromosphere	32
	Fuller-Rowell and Carolus J. Schrijver	
12.1	Introduction	32
12.2	Forces and flows in the neutral atmosphere	32
12.3	Neutral-gas mixing, fractionation, and global circulation	33
12.4	Energy input and dissipation	33
12.5	Ionization fraction	33

viii		Contents	
	12.7	Outstanding issues and science questions	349
	12.8	Comparing the Sun's chromosphere and Earth's ionosphere	351
13	Com	parative planetary environments	360
	Franc	ees Bagenal	
	13.1	Introduction	360
	13.2	Jupiter	375
	13.3	Saturn	384
	13.4	Uranus and Neptune	388
	13.5	Mercury and Ganymede	390
	13.6	Objects without dynamos	391
	13.7	Outstanding questions	398
Appendix I: Authors and editors			399
List	List of illustrations		
List	List of tables		
Refe	References		
Inde	Index		

The plates are to be found between pages 406 and 407.

Preface

Over the past few centuries, our awareness of the coupling between the Sun's riability and the Earth's environment, and perhaps even its climate, has been advancing at an ever increasing rate. The Sun is a magnetically variable star and, planets with intrinsic magnetic fields, planets with atmospheres, or planets e Earth with both, there are profound consequences and impacts. Today, the successful increase in knowledge of the workings of the Sun's magnetic activity, the recognition of the many physical processes that couple the realm of the Sun our galaxy, and the insights into the interaction of the solar wind and radiation with the Earth's magnetic field, atmosphere and climate system have tended to

ferentiate and insularize the solar heliospheric and geo-space sub-disciplines of the physics of the local cosmos. In 2001, the NASA Living With a Star (LWS) program was initiated to reverse that trend.

The recognition that there are many connections within the Sun–Earth systems approach has led to the development of an integrated strategic mission plan and a comprehensive research program encompassing all branches of solar, heliospheric, and space physics and aeronomy. In doing so, we have developed an interdisciplinary community to address this program. This has raised awareness and appreciation of the research priorities and challenges among LWS scientists and has led to observational and modeling capabilities that span traditional discipline boundaries. The successful initial integration of the LWS sub-disciplines, under the newly coined term "heliophysics", needed to be expanded into the early education of scientists. This series of books is intended to do just that: aiming at the advanced undergraduate and starting graduate-level students, our aim is to teach heliophysics as a single intellectual discipline. Heliophysics is important both as a discipline that will deepen our understanding of how the Sun drives space weather and climate at Earth and other planets and also as a discipline that studies universal astrophysical processes with unrivaled resolution and insight possibilities. The goal Х

Preface

of this series is to provide seed materials for the development of new researchers and new scientific discovery.

> Richard Fisher, Director of NASA's Heliophysics Division Madhulika Guhathakurta, NASA/LWS program scientist

Heliophysics

helio-, prefix, on the Sun and environs; from the Greek *helios*. **physics, n.,** the science of matter and energy and their interactions.

Heliophysics is the

- comprehensive new term for the science of the Sun-solar-system connection.
- exploration, discovery, and understanding of our space environment.
- system science that unites all the linked phenomena in the region of the cosmos influenced by a star like our Sun.

Heliophysics concentrates on the Sun and its effects on Earth, the other planets of the solar system, and the changing conditions in space. Heliophysics studies the magnetosphere, ionosphere, thermosphere, mesosphere, and upper atmosphere of the Earth and other planets. Heliophysics combines the science of the Sun, corona, heliosphere and geospace. Heliophysics encompasses cosmic rays and particle acceleration, space weather and radiation, dust and magnetic reconnection, solar activity and stellar cycles, aeronomy and space plasmas, magnetic fields and global change, and the interactions of the solar system with our galaxy.

From NASA's Heliophysics. The New Science of the Sun–Solar-System Connection: Recommended Roadmap for Science and Technology 2005–2035.