CMOS Analog Design Using All-Region MOSFET Modeling

Covering the essentials of analog circuit design, this book takes a unique design approach based on a MOSFET model valid for all operating regions, rather than the standard square-law model. Opening chapters focus on device modeling, integrated circuit technology, and layout, whilst later chapters go on to cover noise and mismatch, and analysis and design of the basic building blocks of analog circuits, such as current mirrors, voltage references, voltage amplifiers, and operational amplifiers. An introduction to continuoustime filters is also provided, as are the basic principles of sampled-data circuits, especially switched-capacitor circuits. The final chapter then reviews MOSFET models and describes techniques to extract design parameters. With numerous design examples and exercises also included, this is ideal for students taking analog CMOS design courses and also for circuit designers who need to shorten the design cycle.

MÁRCIO CHEREM SCHNEIDER is a Professor in the Electrical Engineering Department at the Federal University of Santa Catarina, Brazil, where he has worked since 1976. He has also spent a year at the Swiss Federal Institute of Technology (EPFL) and has worked as a Visiting Associate Professor in the Department of Electrical and Computer Engineering at Texas A&M University. His current research interests mainly focus on MOSFET modeling and transistor-level design, in particular of analog and RF circuits.

CARLOS GALUP-MONTORO is currently a Visiting Scholar in the Electrical Engineering Department at the University of California, Berkeley, and a Professor in the Electrical Engineering Department at the Federal University of Santa Catarina, Brazil, where he has worked since 1990. His main research interests are in field-effect-transistor modeling and transistor-level design.

CMOS Analog Design Using All-Region MOSFET Modeling

MÁRCIO CHEREM SCHNEIDER AND CARLOS GALUP-MONTORO Federal University of Santa Catarina, Brazil

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521110365

© Cambridge University Press 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978 0 521 11036 5 Hardback

Additional resources for this publication at www.cambridge.org/9780521110365

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To our wives Rita and Marlene

Contents

Preface

1	Intr	oductior	n to analog CMOS design	1
	1.1	Analo	g design	1
		1.1.1	The need for analog design	1
		1.1.2	Tradeoffs in analog design	2
		1.1.3	The importance of component modeling	2
	1.2	Bipola	ar and metal-oxide-semiconductor field-effect transistors	3
		1.2.1	p–n Junctions	3
		1.2.2	Bipolar junction transistors	5
		1.2.3	MOS field-effect transistors	7
		1.2.4	Important differences between BJTs and MOSFETs	14
	1.3	Analo	g bipolar and MOS integrated circuits	16
		1.3.1	Analysis and design of integrated circuits	16
		1.3.2	Design of common-emitter and common-source amplifiers	17
	Pro	blems		21
	Ref	erences		24
2	Advanced MOS transistor modeling		26	
	2.1	Funda	mentals of the MOSFET model	26
		2.1.1	Electrons and holes in semiconductors	26
		2.1.2	The two-terminal MOS structure	28
		2.1.3	Accumulation, depletion, and inversion (for p-type substrates)	31
		2.1.4	The small-signal equivalent circuit of the two-terminal MOS (for	
			p-type substrates)	32
		2.1.5	The three-terminal MOS structure and the unified charge-control	
			model (UCCM)	34
		2.1.6	The pinch-off voltage	38
		2.1.7	The Pao–Sah exact <i>I–V</i> model	39
		2.1.8	A charge-sheet formula for the current	41
		2.1.9	A charge-control compact model	41
		2.1.10	Threshold voltage	42

viii	Contents		
	2.2 A design-oriented	MOSFET model	45
	2.2.1 Forward a	nd reverse components of the drain current	45
	2.2.2 Universal	dc characteristics	48
	2.2.3 MOSFET	operation in weak and strong inversion	51
	2.2.4 Small-sign	al transconductances	53
	2.3 Dynamic MOSFE	ET models	57
	2.3.1 Stored cha	irges	57
	2.3.2 Capacitive	coefficients	59
	2.3.3 Capacitan	ces of the extrinsic transistor	62
	2.3.4 A non-qua	isi-static small-signal model	62
	2.3.5 A quasi-st	atic small-signal model	65
	2.3.6 The intrins	sic transition frequency	67
	2.4 Short-channel effe	ects in MOSFETs	68
	2.4.1 Effective 1	nobility	68
	2.4.2 Velocity sa	aturation	69
	2.4.3 Channel-le	ength modulation	71
	2.4.4 Drain-indu	iced barrier lowering	72
	2.4.5 Output con	nductance in saturation	73
	2.4.6 Gate tunne	eling currents	75
	2.4.7 Bulk curre	ent	76
	A2.1 Semiconductor ch	larges	77
	A2.2 Drain- and source	-associated inversion charges	/9
	A2.3 Summary of n-ch	annel MOSFET equations: UCCM, current, charges,	0.1
	transconductances	s, and capacitances including short-channel effects	81
	A2.4 An alternative lov	v-frequency small-signal model of the MOSFET in	0.1
	Saturation		81
	Problems		84
	References		80
3	CMOS technology, components, and layout techniques 8		
	3.1 An overview of C	MOS technology	88
	3.1.1 Basic proc	ess steps in monolithic IC fabrication	88
	3.1.2 Generic de	ep-submicron CMOS process flow	89
	3.1.3 Main para	meters in 350-, 180-, and 90-nm processes	92
	3.2 Devices in CMOS	S technology	93
	3.2.1 Resistors		94
	3.2.2 Capacitors	3	101
	3.2.3 Inductors		109
	3.2.4 Bipolar tra	insistors	112
	3.3 Latchup		114
	3.4 Analog layout iss	ues	115
	3.4.1 Optical lit	hography	115

	Contents		ix	
		3.4.2	Mask layout and design rules	118
		3.4.3	MOSFET layout	121
	Pro	blems		128
	Ref	erences		130
4	Ten	nporal a	nd spatial fluctuations in MOSFETs	134
	4.1	Types	of noise	134
		4.1.1	Thermal noise	134
		4.1.2	Shot noise	136
		4.1.3	Flicker noise	136
	4.2	Mode	ling the drain-current fluctuations in MOSFETs	137
	4.3	Therm	nal noise in MOSFETs	139
		4.3.1	Channel thermal noise	139
		4.3.2	Short-channel effects on channel thermal noise	140
		4.3.3	Induced gate noise	141
	4.4	Flicke	r noise in MOSFETs	144
	4.5	Design	n-oriented noise models	147
		4.5.1	Consistency of noise models	147
		4.5.2	The thermal noise excess factor	147
		4.5.3	Flicker noise in terms of inversion levels	148
		4.5.4	The corner frequency	150
		4.5.5	Two-port noise models	151
	4.6	System	natic and random mismatch	154
		4.6.1	Pelgrom's model of mismatch	155
		4.6.2	(Mis)matching energy	161
		4.6.3	The number-fluctuation mismatch model	162
		4.6.4	The dependence of mismatch on bias, dimensions, and technology	164
		4.6.5	Matching analysis of analog circuits	167
	Pro	blems		170
	Ref	erences		175
5	Current mirrors			177
	5.1	A sim	ple MOS current mirror	177
		5.1.1	The ideal current mirror	177
		5.1.2	The two-transistor current mirror	177
		5.1.3	Error caused by difference between drain voltages	179
		5.1.4	Error caused by transistor mismatch	180
		5.1.5	Small-signal characterization and frequency response	184
		5.1.6	Noise	186
	5.2	Casco	de current mirrors	187
		5.2.1	Self-biased cascode current mirrors	188
		5.2.2	High-swing cascode current mirrors	189

Х

Contents

Cambridge University Press
978-0-521-11036-5 - CMOS Analog Design Using All-Region MOSFET Modeling
Marcio Cherem Schneider and Carlos Galup-Montoro
Frontmatter
More information

	5.3 Advanced current mirrors	191
	5.4 Class-AB current mirrors	192
	A5.1 Harmonic distortion	193
	Problems	195
	References	198
6	Current sources and voltage references	199
	6.1 A simple MOS current source	199
	6.2 The Widlar current source	200
	6.3 Self-biased current sources (SBCSs)	201
	6.4 A MOSFET-only self-biased current source	205
	6.5 Bandgap voltage references	208
	6.5.1 The operating principle of the bandgap reference	209
	6.5.2 CMOS bandgap references	210
	6.5.3 A CMOS bandgap reference with sub-1-V operation	214
	6.5.4 A resistorless CMOS bandgap reference	216
	6.6 CMOS voltage references based on weighted V_{GS}	217
	6./ A current-calibrated CMOS PTAT voltage reference	218
	Problems	219
	References	222
7	Basic gain stages	225
7	Basic gain stages7.1 Common-source amplifiers	225 225
7	Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load	225 225 225
7	Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load	225 225 225 226
7	Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage	225 225 225 226 228
7	Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load	225 225 225 226 228 231
7	Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push-pull amplifier (static CMOS inverter)	225 225 225 226 228 231 236
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push–pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 	225 225 225 226 228 231 236 239
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push-pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 7.3 Source followers 	225 225 226 228 231 236 239 242
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push-pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 7.3 Source followers 7.4 Cascode amplifiers 	225 225 226 228 231 236 239 242 246
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push-pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 7.3 Source followers 7.4 Cascode amplifiers 7.4.1 Telescopic- and folded-cascode amplifiers 	225 225 225 226 228 231 236 239 242 246 246
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push–pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 7.3 Source followers 7.4 Cascode amplifiers 7.4.1 Telescopic- and folded-cascode amplifiers 7.4.2 The gain-boost technique 	225 225 226 228 231 236 239 242 246 246 250
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push–pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 7.3 Source followers 7.4 Cascode amplifiers 7.4.1 Telescopic- and folded-cascode amplifiers 7.4.2 The gain-boost technique 7.5 Differential amplifiers 	225 225 226 228 231 236 239 242 246 246 250 252
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push-pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 7.3 Source followers 7.4 Cascode amplifiers 7.4.1 Telescopic- and folded-cascode amplifiers 7.4.2 The gain-boost technique 7.5 Differential amplifiers 7.5.1 The source-coupled pair 	225 225 225 226 228 231 236 239 242 246 246 250 252 252
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push–pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 7.3 Source followers 7.4 Cascode amplifiers 7.4.1 Telescopic- and folded-cascode amplifiers 7.4.2 The gain-boost technique 7.5 Differential amplifiers 7.5.1 The source-coupled pair 7.5.2 Resistive-load differential amplifiers 	225 225 225 226 228 231 236 239 242 246 246 246 250 252 252 259
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push–pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 7.3 Source followers 7.4 Cascode amplifiers 7.4.1 Telescopic- and folded-cascode amplifiers 7.4.2 The gain-boost technique 7.5 Differential amplifiers 7.5.1 The source-coupled pair 7.5.2 Resistive-load differential amplifiers 7.5.3 Current-mirror-load differential amplifiers 	225 225 226 228 231 236 239 242 246 246 250 252 252 259 260
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push–pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 7.3 Source followers 7.4 Cascode amplifiers 7.4.1 Telescopic- and folded-cascode amplifiers 7.4.2 The gain-boost technique 7.5 Differential amplifiers 7.5.1 The source-coupled pair 7.5.2 Resistive-load differential amplifiers 7.5.3 Current-mirror-load differential amplifiers 7.6 Sizing and biasing of MOS transistors for amplifier design 	225 225 225 226 228 231 236 239 242 246 246 250 252 252 259 260 278
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push–pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 7.3 Source followers 7.4 Cascode amplifiers 7.4.1 Telescopic- and folded-cascode amplifiers 7.4.2 The gain-boost technique 7.5 Differential amplifiers 7.5.1 The source-coupled pair 7.5.2 Resistive-load differential amplifiers 7.5.3 Current-mirror-load differential amplifiers 7.6 Sizing and biasing of MOS transistors for amplifier design 7.6.1 Sizing and biasing of a common-source amplifier	225 225 226 228 231 236 239 242 246 246 250 252 252 259 260 278 279
7	 Basic gain stages 7.1 Common-source amplifiers 7.1.1 Resistive load 7.1.2 Diode-connected load 7.1.3 The intrinsic gain stage 7.1.4 Current source load 7.1.5 The push-pull amplifier (static CMOS inverter) 7.2 Common-gate amplifiers 7.3 Source followers 7.4 Cascode amplifiers 7.4.1 Telescopic- and folded-cascode amplifiers 7.4.2 The gain-boost technique 7.5 Differential amplifiers 7.5.1 The source-coupled pair 7.5.2 Resistive-load differential amplifiers 7.5.3 Current-mirror-load differential amplifiers 7.6 Sizing and biasing of MOS transistors for amplifier design 7.6.1 Sizing and biasing of a common-source amplifier 	225 225 225 226 228 231 236 239 242 246 246 250 252 252 259 260 278 279 280

8

9

Cambridge University Press
978-0-521-11036-5 - CMOS Analog Design Using All-Region MOSFET Modeling
Marcio Cherem Schneider and Carlos Galup-Montoro
Frontmatter
More information

Con	tents	
7.7	Reuse of MOS analog design	
	7.7.1 Effects of scaling on analog circuits	
	7.7.2 Analog resizing rules	
Pro	blems	
Ref	erences	
Оре	rational amplifiers	
8.1	Applications and performance parameters	
	8.1.1 The ideal operational amplifier	
	8.1.2 Basic applications of operational amplifiers	
	8.1.3 Performance parameters	
8.2	The differential amplifier as an operational amplifier	
	8.2.1 The simple-stage differential amplifier	
	8.2.2 The telescopic-cascode differential amplifier	
8.3	The symmetric operational amplifier	
	8.3.1 DC characteristics	
	8.3.2 Small-signal characteristics and noise	
	8.3.3 Slew rate	
8.4	The folded-cascode operational amplifiers	
	8.4.1 DC characteristics	
	8.4.2 Small-signal characteristics and noise	
	8.4.3 Slew rate	
8.5	Two-stage operational amplifiers	
	8.5.1 Cascade versus cascode amplifiers	
	8.5.2 DC characteristics of the two-stage amplifier	
	8.5.3 Small-signal characteristics of the two-stage Miller-compensated	
	op amp	
	8.5.4 Slew rate	
	8.5.5 Alternative forms of compensation of the two-stage op amp	
8.6	Three-stage operational amplifiers	
8.7	Rail-to-rail input stages	
8.8	Class-AB output stages for operational amplifiers	
8.9	Fully-differential operational amplifiers	
A8.	Systematic offset of a two-stage op amp	
Pro	blems	
Ref	erences	
Fun	damentals of integrated continuous-time filters	
9.1	Basics of MOSFET-C filters	
	9.1.1 The MOSFET as a tunable resistor	
	9.1.2 Balanced transconductors for MOSFET-C filters	
	9.1.3 MOSFET-C integrators	
	9.1.4 Filter examples	

xii	Contents	
	9.2 Basics of OTA-C filters	378
	9.2.1 Transconductors	379
	9.2.2 G_m -C integrators	383
	9.2.3 Signal-to-noise ratio, dynamic range, and power	386
	9.2.4 Filter examples	390
	9.3 Digitally-programmable continuous-time filters	393
	9.4 On-chip tuning schemes	395
	A9.1 Distortion of the MOSFET operating as a resistor	397
	Problems	399
	References	400
10	Fundamentals of sampled-data circuits	404
	10.1 MOS sample-and-hold circuits	404
	10.1.1 Sample-and-hold basics	404
	10.1.2 Thermal noise	406
	10.1.3 Switch on-resistance	409
	10.1.4 Sampling distortion due to switch on-resistance	410
	10.1.5 Linearization of the MOS sampling switch	412
	10.1.6 Charge injection by the switch	413
	10.1.7 Low-voltage sample-and-hold circuits	417
	10.1.8 Jitter analysis	421
	10.1.9 Tradeoff between resolution and sampling rate in analog-to-digital	
	converters	422
	10.2 Basics of switched-capacitor filters	423
	10.2.1 Basic principles of operation of switched-capacitor circuits	423
	10.2.2 Switched-capacitor integrators	426
	10.2.3 Offset compensation	429
	10.2.4 Biquad filters	430
	10.2.5 Amplifier specifications	433
	10.2.6 Low-distortion switched-capacitor filters	435
	10.3 Switched-capacitor circuits as charge processors	43/
	10.3.1 Realization of linear voltage processors	438
	10.4. Alternative projected a investigation	440
	10.4 Alternative switched-circuit techniques	441
	A10.1 Modeling the sampling distortion due to the non-linearity of the switch	444
	Problems	444
	F 1001cms	440
		H 50
11	Overview of MOSFET models and parameter extraction for design	452
	11.1 MOSFET models for circuit simulation	452
	11.1.1 Threshold-voltage-based models (BSIM3 and BSIM4)	453

-

Cambridge University Press 978-0-521-11036-5 - CMOS Analog Design Using All-Region MOSFET Modeling Marcio Cherem Schneider and Carlos Galup-Montoro Frontmatter More information

Contents	xiii
11.1.2 Surface-potential-based models (HiSIM, MM11, and PSP)	454
11.1.3 Charge-based models (EKV, ACM, and BSIM5)	458

11.2 Parameter extraction for first-order design	460
11.2.1 Specific current and threshold voltage	461
11.2.2 The slope factor	463
11.2.3 Mobility	465
11.3 Comparison between experiment and the ACM model in a 0.35-µm	
technology	467
11.4 Comparison between simulation and the ACM model in a 0.13-µm	
technology	470
11.5 The Early voltage	473
Problems	479
References	480
Index	483

Index

Preface

Analog integrated circuits in bipolar technology, beginning with operational amplifiers and advancing to data conversion and communication circuits, were developed in the 1960s and matured during the 1970s. During this period, the metal–oxide–semiconductor (MOS) technology evolved for digital circuits because of its better efficiency in terms of silicon-area use and power consumption compared with bipolar digital technologies. To reduce the system cost and power consumption, chips including digital and analog circuits appeared in MOS technology in the late 1970s. The first analog circuits in MOS technology were for audio-frequency applications. With the scaling of the MOS technology, driven by the need for large-scale integration levels, enhanced performance and reduced cost, even radio-frequency (RF) applications in MOS technology have become possible. Compared with digital design, analog design requires much more careful device modeling, and for this reason analog designers were at the origin of many MOS modeling enhancements.

The strong similarities between the basic operating principles of many bipolar and MOS analog building blocks and circuits have led some textbook authors to combine their presentation. On the other hand, there are profound differences between bipolar and MOS circuits in terms of the electrical performance and design approaches, and for this reason other texts focus only on MOS analog circuits. In this textbook we take this area of specialization a step further, focusing on analog MOS circuits at transistor level, using an accurate but simple MOS transistor model for design in order to reduce the distance between hand design and simulation results. In place of the common approach of furnishing separate analytical formulas for the strong- and weak-inversion operation regions of a building block, we provide simple formulas that are valid in all operation regions, including moderate inversion. This unified design approach is particularly suitable for analog design in advanced complementary-metal-oxide-semiconductor (CMOS) technologies. In effect, for deep-submicron MOS technologies good design tradeoffs are often obtained with transistors operating in weak and moderate inversion. It should be observed that the conventional approach based on the asymptotic models of strong and weak inversion does not allow meaningful exploration of the design space.

The book starts with a short comparison between bipolar and MOS analog circuits. The main differences between bipolar and MOS transistors are emphasized, since superficial similarities between them often lead to erroneous results. The drawbacks of some classical MOS field-effect-transistor (FET) models, particularly those related to the choice of the source terminal as the reference, are explained. Chapter 2 presents an accurate model for the MOS transistor. Large- and small-signal models for low and high frequency, which are valid in all the operating regions, are presented. The important concept of inversion level is developed and explicit expressions for all large- and

xvi Preface

small-signal parameters of transistors in terms of the inversion levels are provided. The main small-geometry effects are summarized. An overview of CMOS technology for designers and the basic properties of passive devices in CMOS technology are the subjects of Chapter 3. The models for integrated resistors and capacitors are developed with the necessary depth for analog design. Some good practices for designing MOS transistor layouts are summarized. Chapter 4 gives a unified modeling for mismatch and noise. With the shrinking of the MOSFET dimensions and reduction in the supply voltage of advanced technologies, the consideration of matching and noise has become even more important for analog design. Thus, we have included a detailed presentation of mismatch and noise in Chapter 4 so that they can be considered in the subsequent study of the basic circuits and building blocks.

Chapter 5 starts with the simple current mirror, one of the basic building blocks of analog circuits. The main cascode configurations and some advanced mirror topologies are then presented. We make a complete large- and small-signal analysis and include errors due to finite output resistance, mismatch, and noise. Chapter 6 deals with current sources and voltage references. Self-biased current sources and voltage references are described, emphasizing bandgap references. The whole chapter is dedicated to the basic bias building blocks, because bias and dc behavior are of the utmost importance in relation to analog circuits. In Chapter 7 the basic gain stages are described. Commonsource, common-gate, source-follower, cascode, and differential amplifiers are thoroughly analyzed. The use of an all-region one-equation MOSFET model allows the complete exploration of the design space, and the choice of the best operating region (weak, moderate, or strong inversion) for each transistor involved. The important topic of CMOS design scaling and reuse is summarized at the end of the chapter. Chapter 8 deals with the design of operational amplifiers. The main topologies used in CMOS technology are presented, including single- and two-stage operational amplifiers. Fully differential amplifiers, including the folded-cascode type, and common-mode feedback circuits are described.

The following two chapters of the book introduce the basic circuit techniques for frequency-selective filters and some building blocks for data converters. In Chapter 9 the MOSFET-C filter technique derived from active *RC* filters is presented, followed by the basics of operational transconductance amplifier-capacitor (OTA-C) filters, including on-chip tuning circuits. Digitally-programmable filters using MOSFET-only current dividers (MOCDs) are also discussed.

In Chapter 10, following the analysis of analog MOS switches and sample-and-hold circuits, sampled-data techniques are introduced. Switched-capacitor building blocks for integrated filters and converters are described. The important topic of switched-capacitor filters fully compatible with digital MOS technology is covered. Finally, some complementary modeling topics considered important for circuit design are summarized in the appendices.

Chapter 11 provides an overview of compact MOSFET models, which play a significant role in the analysis and design of integrated circuits. This chapter also describes some procedures employed to extract fundamental design parameters associated with the MOSFET model used in this textbook.

Preface

This book is intended for an in-depth first course in analog CMOS design, for seniorundergraduate and first-year graduate students, as well as for self-study in the case of practicing engineers. The required background for the students is one or two introductory courses in electronics and in semiconductor devices.

Since analog-circuit design requires knowledge in the areas of device modeling, integrated-circuit technology, and layout, in addition to signals and circuits, the study of Chapters 1–4 is essential for any use of the book. A course focused on transistor-level design could be restricted to Chapters 1–8. A 15-week semester is sufficient to cover the whole book.

We are very grateful to our former PhD students Professors Ana Isabela Araújo Cunha, Oscar da Costa Gouveia Filho, Alfredo Arnaud, and Hamilton Klimach, who made invaluable contributions to the research on MOSFET modeling in our group and to the CNPq and CAPES, Brazilian agencies for scientific development, for their support of the research in our laboratory.

As in the past few years, we continue to have the collaboration of Dr. Siobhan Wiese for the revision of our texts. We are lucky to have a native English speaker with a scientific background to count on, as this is not always a rewarding task. We are also very grateful to João Romão for the skillful preparation of the figures. Last but not least, the hard work of Gustavo Leão Moreira for the simulations in Chapter 11 is gratefully acknowledged.