ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

An Algebraic Introduction to K-Theory

An Algebraic Introduction to K-Theory

This book is an introduction to *K*-theory and a text in algebra. These two roles are entirely compatible. On the one hand, nothing more than the basic algebra of groups, rings, and modules is needed to explain the classical algebraic *K*-theory. On the other hand, *K*-theory is a natural organizing principle for the standard topics of a second course in algebra, and these topics are presented carefully here, with plenty of excercises at the end of each short section. The reader will not only learn algebraic *K*-theory, but also Dedekind domains, classical groups, semisimple rings, character theory, quadratic forms, tensor products, localization, completion, tensor algebras, symmetric algebras, central simple algebras, and Brauer groups.

The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has successfully used this text to teach algebra to first-year graduate students. Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year.

Bruce A. Magurn is Professor of Mathematics at Miami University in Oxford, Ohio, where he has taught for fifteen years. He edited the AMS volume *Reviews in K-Theory, 1940-84*. This book originated from courses taught by the author at Miami University, the University of Oklahoma, and the University of Padua.

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

An Algebraic Introduction to K-Theory

BRUCE A. MAGURN Miami University

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521106580

© Bruce A. Magurn 2002

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002 This digitally printed version (with corrections) 2009

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Magurn, Bruce A.
An algebraic introduction to K-theory / Bruce A. Magurn.
p. cm – (Encyclopedia of mathematics and its applications ; v. 87)
Includes bibliographical references and index.
ISBN 0-521-80078-1
I. K-theory. I. Title. II. Series.

QA612.33 .M34 2002 512'.55-dc21

2001043552

ISBN 978-0-521-80078-5 Hardback ISBN 978-0-521-10658-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface	X1
Chapter 0 Preliminaries	1
Part I Groups of Modules: K_0	15
Chapter 1 Free Modules	17
1A Bases	17
1B Matrix Representations	26
1C Absence of Dimension	38
Chapter 2 Projective Modules	43
2A Direct Summands	43
2B Summands of Free Modules	51
Chapter 3 Grothendieck Groups	57
3A Semigroups of Isomorphism Class	ses 57
3B Semigroups to Groups	71
3C Grothendieck Groups	83
3D Resolutions	95
Chapter 4 Stability for Projective Modules	104
4A Adding Copies of R	104
4B Stably Free Modules	108
4C When Stably Free Modules Are F	ree 113
4D Stable Rank	120
4E Dimensions of a Ring	128
Chapter 5 Multiplying Modules	133
$5 \mathrm{A}$ Semirings	133
5B Burnside Rings	135
5C Tensor Products of Modules	141
Chapter 6 Change of Rings	160
$6A K_0 ext{ of Related Rings}$	160
$6B \qquad G_0 \ of \ Related \ Rings$	169
$6C$ K_0 as a Functor	174

viii

Cambridge University Press
978-0-521-10658-0 - An Algebraic Introduction to K-Theory
Bruce A. Magurn
Frontmatter
Moreinformation

Contents		
$\begin{array}{c} 6\mathrm{D} \\ 6\mathrm{E} \end{array}$	The Jacobson Radical Localization	178 185
Part II S	ources of K_0	203
Chapter 7 1	Number Theory	205
7A	Algebraic Integers	205
7B	Dedekind Domains	212
7C	Ideal Class Groups	224
7D 7D	Extensions and Norms	230
7E	K_0 and G_0 of Dedekind Domains	242
Chapter 8 (Group Representation Theory	252
8A	Linear Representations	252
8B	Representing Finite Groups Over Fields	265
$8\mathrm{C}$	Semisimple Rings	277
8D	Characters	300
Part III (Groups of Matrices: K_1	317
Chapter 9 1	Definition of K_1	319
9A	Elementary Matrices	319
9B	Commutators and $K_1(R)$	322
9C	Determinants	328
9D	The Bass K_1 of a Category	333
Chapter 10	Stability for $K_1(R)$	342
10A	Surjective Stability	343
10B	Injective Stability	348
Chapter 11	Relative K_1	357
11A	Congruence Subgroups of $GL_n(R)$	357
11B	Congruence Subgroups of $SL_n(R)$	369
11C	Mennicke Symbols	374
Part IV I	Relations Among Matrices: K_2	399
Chapter 12	$K_2(R)$ and Steinberg Symbols	401
-12A	Definition and Properties of $K_2(R)$	401
12B	Elements of $St(R)$ and $K_2(R)$	413
Chapter 13	Exact Sequences	430
13A	The Relative Sequence	431
13B	Excision and the Mayer-Vietoris Sequence	456
13C	The Localization Sequence	481
Chapter 14	Universal Algebras	488
14A	Presentation of Algebras	489

CAMBRIDGE

Cambridge University Press
978-0-521-10658-0 - An Algebraic Introduction to K-Theory
Bruce A. Magurn
Frontmatter
More information

14B	Graded Rings	493
14C	The Tensor Algebra	497
14D	Symmetric and Exterior Algebras	505
14E	The Milnor Ring	518
14F	Tame Symbols	534
14G	Norms on Milnor K-Theory	547
14H	Matsumoto's Theorem	557
Part V S	ources of K_2	567
Chapter 15	Symbols in Arithmetic	569
15A	Hilbert Symbols	569
15B	Metric Completion of Fields	572
15C	The p-Adic Numbers and	
	Quadratic Reciprocity	580
15D	Local Fields and Norm Residue Symbols	595
Chapter 16	Brauer Groups	610
16A	The Brauer Group of a Field	610
16B	Splitting Fields	623
16C	Twisted Group Rings	629
16D	The K_2 Connection	636
Appendix		645
А	Sets, Classes, Functions	645
В	Chain Conditions, Composition Series	647
G., 1 G		057
special S	ymbols	097
Reference	es	661
Index		671

Preface

This book is intended as an introduction to algebraic K-theory that can serve as a second-semester course in algebra. A first algebra course develops the basic structures of groups, rings, and modules. But a reader of research literature in algebra soon encounters a second level of structures, such as class groups, Burnside rings, representation rings, Witt rings, and Brauer groups. These are groups, rings, or modules whose elements are themselves isomorphism classes of groups, rings, or modules. Each of these second-level structures is a variation of a universal construction developed by A. Grothendieck in 1958. Given a category \mathcal{C} of objects, Grothendieck found a natural way to construct an abelian group $K(\mathcal{C})$ of the isomorphism classes of those objects. By Grothendieck's own account, his letter K probably stood for Klasse, the German word for class. This is the source of the K in K-theory.

Algebraic K-theory is the study of groups of classes of algebraic objects. It focuses on a sequence of abelian groups $K_n(R)$ associated to each ring R. The first of these is $K_0(R)$, Grothendieck's group $K(\mathcal{C})$, where \mathcal{C} is a certain category of R-modules. It is used to create a sort of dimension for R-modules that lack a basis. The group $K_1(R)$ consists of the row-equivalence classes of invertible matrices over R and is used to study determinants, and $K_2(R)$ measures the fine details of row-reduction of matrices over R.

Many deep problems in algebra have been solved through algebraic K-theory, such as the normal integral basis problem in number fields, the zero-divisor conjecture for integral group rings of solvable groups, the classification of normal subgroups of linear groups, and the description of the Brauer group of a field in terms of cyclic algebras. But, beyond this, K-theory has brought algebraic techniques to bear in the solution of important problems in topology, geometry, number theory, and functional analysis.

Unfortunately, the currently available introductions to algebraic K-theory expect a great deal of the reader: Some background in algebraic topology, algebraic geometry, homological algebra, or functional analysis is taken as a prerequisite. This is due in part to the important role played by K-theory in disciplines outside of algebra, and it is partly because the "higher" K-groups $K_3(R), K_4(R), \ldots$ are defined and studied by using algebraic geometry and topology.

But, at an introductory level, the groups $K_n(R)$, for $n \leq 2$, and the higher

xii

Preface

Milnor K-groups $K_n^M(F)$ of a field F are accessible purely through algebra. To K-theorists, this algebraic part has come to be known as "classical" algebraic K-theory. And, judging by a census of the research literature, much of the power of K-theory for applications lies in this classical realm.

In this text, I have assumed no prerequisite beyond undergraduate mathematics and a single semester of algebra, including Galois theory and the structure of modules over a principal ideal domain, as might be taught from N. Jacobson's *Basic Algebra I*, S. Lang's *Algebra*, S. MacLane and G. Birkhoff's *Algebra*, or T. Hungerford's *Algebra*. I have included self-contained treatments of standard first-year graduate algebra topics: tensor products, categories and functors, Dedekind domains, the Jacobson radical, semisimple rings, character theory of groups, Krull dimension, projective resolutions, quadratic forms, central simple algebras, and symmetric and exterior algebras. The blend of K-theory with these topics motivates and enhances their exposition.

By including these algebra topics with the K-theory, I also hope to reach the mathematically sophisticated reader, who may have heard that K-theory is useful but inaccessible. Even if your algebra is rusty, you can read this book. The necessary background is here, with proofs.

This book provides a broad coverage of classical algebraic K-theory, with complete proofs. The groups $K_0(R)$, $K_1(R)$, and $K_2(R)$ are developed, along with the computational techniques of devissage, resolution, localization, Morita invariance, preservation of products, and the relative, Mayer-Vietoris, and localization exact sequences. The Krull dimension of a ring is shown to lead, through stable range conditions, to results on direct sum cancellation of modules and the injective and surjective stability theorems for $K_1(R)$. These, in turn, lead to a proof of the Bass-Kubota presentation of relative SK_1 and an outline of the solution of the congruence subgroup problem for the general linear group over a ring of arithmetic type. The higher Milnor K-theory is presented in detail, accompanied by a sketch of its connection to the Witt ring. Then Keune's proof of Matsumoto's presentation of $K_2(R)$ is included. The final part develops norm residue symbols and the relevance of K_2 to reciprocity laws and the Brauer group.

Inevitably, this text reflects my own interests and experience in teaching algebra and K-theory over the last 20 years. It incorporates lecture notes I have presented at the University of Oklahoma, Miami University, and the University of Padua, Italy. The categories considered here are explicit categories of modules, rather than subcategories of arbitrary abelian categories; this entails some loss of generality but seems less intimidating to the student who is new to K-theory. Unlike a treatment aimed at the K-theory of schemes, there is more emphasis here on algebraic than on transcendental extensions of a field, and extensive attention to examples over noncommutative rings R.

The text is organized broadly into five parts, and these are divided into chapters (1, 2, ...) and sections (2A, 2B, ...). The chapter numbers are consecutive from the beginning of the book to the end. Numbered items, such as theorems, definitions, or displayed equations, are labeled by the chapter in which they

Preface

appear, a decimal point, and the number of the item within the chapter. For example, (3.27) is the 27th numbered item in Chapter 3. At the end of each section is a list of several exercises, designed to illustrate with examples or point the way to further study.

The text has enough material for a year of study, but a variety of singlesemester courses can be created from selected chapters. I recommend that the introductory Chapters 0 on categories, 1 on free modules, and 2 on projective modules, be summarized in a total of three or four lectures. Material not included in these lectures can be introduced, as needed, later in the course.

A short course on the interaction between rings and modules might include Chapters 3–6, §§7A–B, 8A–C, and 14A–D. This would cover Grothendieck groups, direct sum cancellation, Krull dimension, Dedekind domains, semisimple rings, the Jacobson radical, tensor products, and the construction of algebras from a module.

The connections of K-theory to number theory would be introduced by following §§3A–C, 4A, 5C, and Chapters 6 and 7 by one of two variants: Chapters 9, 10, and 11 for Mennicke symbols and the congruence subgroup problem or Chapter 12, §14H, and Chapter 15 for $K_2(R)$, norm residue and Hilbert symbols, and reciprocity laws.

A course on linear representations of finite groups would follow Chapter 3, §4A, and Chapters 5, 6, 8, and 12 by a sketch of the results in Chapter 16. This would include matrix representations of a finite group over fields of arbitrary characteristic; basic character theory; the structure of group algebras; the representation ring and Burnside ring of a group; and the Brauer group of a field.

I envision two possible short courses in algebraic K-theory itself: A module approach, including $K_0(R)$, $K_1(R)$, $K_2(R)$, devissage, resolution, Morita invariance, stability and exact sequences, would be Chapter 3, §§4A–B, 5A, 5C, and Chapters 6, 9, and 12–14. A linear group emphasis (mainly K_1 and K_2) would follow a brief treatment of Chapters 3 and 5 by Chapter 4, 6(mainly §§6D, 6E), and Chapters 9–14. (A truly minimal coverage of K_0 , K_1 , and K_2 and their connections would be §§3A–C, 4A, 5A, 5C, 6A–C, Chapter 9, §11A, Chapters 12 and 13, and a sketch of §14H.)

This book would never have seen the light of day without the generous assistance of several people. I am grateful to Keith Dennis, Reinhard Laubenbacher, Stephen Mitchell, and Giovanni Zacher for many illuminating conversations, helping me decide the level and general content of the book. My thanks also go to the members of the Miami University algebra seminar: Dennis Davenport, Tom Farmer, Chuck Holmes, Heather Hulett, and Mark deSaint-Rat, whose patient attention to detail and constructive suggestions led to improvements in a substantial portion of the text. I especially wish to acknowledge the help of Reza Akhtar, David Leep, and Katherine Magurn, who read chapters and gave valuable advice. My students in several graduate classes over the last few years have been very helpful as they studied parts of the text. For artfully translating my handwriting into TeX, I thank Jean Cavalieri. Her skill and

xiii

Cambridge University Press 978-0-521-10658-0 - An Algebraic Introduction to K-Theory Bruce A. Magurn Frontmatter More information

xiv

Preface

cheerful attitude made our working partnership enjoyable and efficient. Miami office staff Bonita Porter and Cindie Johnson also did a nice job of typing a few chapters. My colleague Dennis Burke assisted us with the TeX software; he was unfailingly generous with his time and willing to answer my questions on the spot. Paddy Dowling and Steve Wright also contributed some expert software help. I appreciate the encouragement and material support of two successive Chairs of the Miami Mathematics and Statistics Department, Dave Kullman and Mark Smith. Most of all, I am grateful to Katherine, whose insight and support have sustained me throughout.