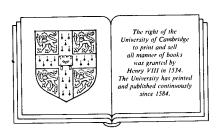


Distillation tray fundamentals


Trial assembly of large two-pass slotted sieve trays. (Courtesy of Union Carbide Corporation.)

Distillation tray fundamentals

M.J.LOCKETT

Union Carbide Corporation

CAMBRIDGE UNIVERSITY PRESS

Cambridge London New York New Rochelle Melbourne Sydney

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521105873

© Cambridge University Press 1986

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1986
This digitally printed version 2009

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Lockett, M. J.

Distillation tray fundamentals.

Bibliography Includes index.

1. Distillation apparatus. I. Title.

TP159.D5L63 1986 660.2'8425 85-30891

ISBN 978-0-521-32106-8 hardback ISBN 978-0-521-10587-3 paperback

Contents

	Preface	1X
	Acknowledgements	xiv
	Nomenclature	xv
1	Some general considerations	
1.1	Introduction	1
1.2	Tray types	2
1.3	Classifying distillation systems	3
	1.3.1 Variation of physical properties with flow parameter	3
	1.3.2 Change of flow regime with flow parameter	7
	1.3.3 Variation of column diameter and number of passes	
	with loading	8
1.4	An outline design procedure	8
2	Bubbles, froth, spray and foam	
2.1	Introduction	12
2.2	Bubbling from single holes	14
	2.2.1 Qualitative description of bubbling from single holes	14
	2.2.2 Simple model for ideal bubbling from a single hole	18
	2.2.3 Bubble sizes on formation from single holes	21
2.3	Bubbling from multiple holes	23
	2.3.1 Bubble sizes on formation from multiple holes	23
2.4	Froths	23
	2.4.1 The bubble regime on sieve trays	23
	2.4.2 The froth regime	24
2.5	Emulsion flow regime	29
2.6	The froth-spray transition	30
	2.6.1 Experimental determination of the froth-spray	
	transition	31
	2.6.2 Bubbling and jetting at a single hole	32

vi		Contents	
		2.6.3 Correlations for the froth-spray transition on sieve	
		trays	34
		2.6.4 Froth-spray transition on trays other than sieve trays	37
	2.7	Spray regime	38
		2.7.1 Introduction	38
		2.7.2 Free trajectory model	39
		2.7.3 Correlations for use in the free trajectory model	40
	2.8	Foam	44
		2.8.1 Introduction	44
		2.8.2 Film stabilisation by the Marangoni effect	45
		2.8.3 Other causes of film stabilisation	49
		2.8.4 Hydrodynamic conditions for foam stability on trays	49
		2.8.5 Mathematical models for foam	50
		2.8.6. Dealing with foaming systems	51
	3	Clear liquid height, dispersion height and density	
	3.1	Introduction	54
	3.2	Measurement of clear liquid height	54
	3.3	Prediction of dispersion density	56
	3.4	Prediction of clear liquid height	58
		3.4.1 Francis's equation for flow over the exit weir	58
		3.4.2 Clear liquid height on sieve trays	59
	3.5	Prediction of dispersion height	61
	3.6	Which correlations to use?	61
	3.7	The influence of liquid exit and entry conditions	61
		3.7.1 Exit calming zones	61
		3.7.2 Splash baffles	67
		3.7.3 Converging flow over the exit weir	68
		3.7.4 Liquid entry effects	68
	3.8	Hydraulic gradient	72
	3.9	Clear liquid height on valve trays	73
	4	Pressure drop	
	4.1	Basic equations	76
	4.2	Dry tray pressure drop – sieve trays	77
		4.2.1 Orifice coefficients	77
		4.2.2 Effect of entrainment on dry tray pressure drop	80
	4.3	sieve trays	80
	4.4	Valve tray pressure drop	82
		4.4.1 Dry tray pressure drop – valve trays	82
		4.4.2 Residual pressure drop – valve trays	86
	5	Maximum capacity	
	5.1	Flooding	87
		5.1.1 Introduction	87
		5.1.2 Flooding correlations	87
		5.1.3 Variables used in jet flooding correlations	92

	Contents	vii
5.2	Liquid entrainment	94
J. _	5.2.1 Mechanism of entrainment	94
	5.2.2 Measurement of entrainment	95
	5.2.3 Prediction of entrainment	96
5.3	Downcomer hydraulics	98
	5.3.1 Downcomer backup	98
	5.3.2 Downcomer froth density	100
5.4	Empirical guidelines for downcomer design	102
	5.4.1 Liquid velocity	103
	5.4.2 Liquid weir load	103
	5.4.3 Choking of the downcomer mouth	104
	5.4.4 Clearance under the downcomer	105
	5.4.5 Minimum weir length	105
5.5	Oscillations at high vapour flow rates	105
6	Weeping	
6.1	Turndown ratio	107
6.2	Weep point	108
	6.2.1 Definition of weep point	108
	6.2.2 Theoretical prediction of the weep point	110
	6.2.3 Empirical correlations for the weep point	112
6.3	Empirical correlations for the weep rate	114
	6.3.1 Dump point	116
6.4	Oscillation at low vapour flow rates	116
7	Tray efficiency	
7.1	The use of efficiencies in column design	118
7.2	Murphree tray efficiencies	119
	7.2.1 Relationship between $E_{\rm ML}$ and $E_{\rm MV}$	120
	7.2.2 Relationship between E_{MV} and E_0	121
7.3	Hausen tray efficiency	121
	7.3.1 Relationship between $E_{\rm H}$ and $E_{\rm MV}$	122
7.4	Phase temperatures and saturation	123
7.5	Standart efficiency	124
7.6	Holland's vaporisation efficiency	124
7.7	Measurement of efficiency	125
7.8	Empirical correlations for efficiency	126
8	Point efficiency	
8.1	Basic equations for predicting efficiency for a binary mixture	128
8.2	Transfer unit definitions	129
	8.2.1 Definitions of $N_{\rm OG}$, $N_{\rm G}$ and $N_{\rm L}$	129
	8.2.2 $N'_{\rm L}$ – an alternative liquid-phase transfer unit	131
8.3	Relationship between E_{OG} and N_{OG}	133
8.4	Estimation of $E_{\rm OG}$ using an Oldershaw column	137
8.5	Estimation of E_{OG} from correlations	138
	8.5.1 The slope and intercept method	138

V111	Contents	
	8.5.2 Correlations based on absorption, stripping and	
	humidification	141
	8.5.3 Percentage liquid-phase resistance in distillation	143
	8.5.4 Chan & Fair's correlation	145
	8.5.5 Estimation of E_{OG} from individual values of k' and a	146
	8.5.6 Estimation of k'_{G} , k'_{L} and a using mass transfer with	
	chemical reaction	148
8.6	Point efficiency and heat transfer	149
	8.6.1 Introduction	149
	8.6.2 Empirical equations	151
	8.6.3 Film theory model	152
	8.6.4 Other approaches	155
o -	8.6.5 Inter-tray heat transfer	155
8.7	Use of point efficiency models in design	157
9	Relationship between point efficiency and tray efficiency	
9.1	Introduction	158
9.2	Lewis's three cases	159
9.3	A general equation for local liquid concentration	160
9.4	Simple backmixing model for Lewis's case 1	163
9.5	Simple backmixing model for Lewis's cases 2 and 3	163
9.6	Mixed pools model for liquid mixing	166
9.7	Measurement and correlation of eddy diffusivity	166
9.8	Horizontal vapour mixing between trays	170
9.9	Exploitation of Lewis's case 2	171
	Effect of liquid entrainment on tray efficiency	172
	Effect of weeping on tray efficiency	174
	Effect of vapour entrainment on tray efficiency	177
9.13	Effect of liquid flow maldistribution on tray efficiency	177
	9.13.1 Bulk liquid velocity profiles	178
	9.13.2 How liquid maldistribution reduces tray efficiency	178
	9.13.3 The stagnant regions model (SRM)	180
	9.13.4 Other liquid maldistribution models	183
	9.13.5 Experimental evidence for efficiency reduction due to	104
	liquid flow maldistribution	184
	9.13.6 Control of the liquid velocity profile	185
0.14	9.13.7 Non-uniform vapour flow Multipass tray efficiency	186
		186
10	Prediction of efficiency for multicomponent mixtures	
10.1	Introduction	188
10.2	Pseudo-binary approach – method 1	189
10.3	Prediction of individual component efficiencies with no	
10.4	diffusional interactions – method 2	190
10.4	Prediction of individual component efficiencies including	
	diffusional interactions – method 3	191

	Contents	ix
10.5	Numerical example	194
10.6	Conclusion	197
	Appendix A	
	Horizontal momentum balance over the exit calming zone	198
	Appendix B	
	Apparent Murphree vapour-phase tray efficiency in the	
	presence of entrainment and weeping	200
	References	207
	Index	225

Preface

The design and performance of distillation trays is one of the most thoroughly studied topics in chemical engineering. Papers dealing with trays are available in abundance but the information they contain is often conflicting. Indeed, by searching hard enough it is usually possible to find some published information to support nearly any contention one cares to make about how trays work. One aim of this book has been to draw together and interpret much of this previous work.

It has not been my intention to write a design manual for tray design. Others have done this far more effectively than I, and some such sources are cited in Chapter 1. The approach I have taken is to assume that the reader is already familiar with elementary design methods as given in the standard undergraduate textbooks. What I have attempted is to delve a little deeper into the empirical correlations and equations which are used for tray design and to indicate their origins and shortcomings. The sequence of the material covered is such that, when coupled with the outline design procedure given in Chapter 1, it is relatively straightforward to adapt it to and improve existing design methods. Having said all that, I suppose this book was mainly written for the same reason that most books of its type are written – having worked in an area, in this case distillation trays, for some time with considerable enjoyment, it felt appropriate to convey my enthusiasm for the subject to others.

Distillation trays are seemingly so simple that it may be surprising that they warrant a whole book, albeit a small one, to themselves. Sieve tray decks are, after all, hardly more than sheets of metal with a few holes punched in them. This of course is part of the fascination – that the behaviour of something so simple can be so difficult to predict with regard to its hydrodynamic and mass transfer performance. Another equally intriguing aspect is the interplay between the topics covered in this book

xii Preface

and the marketing and selling of trays. Distillation column internals are marketed very competitively as a glance at the advertisements in the popular chemical engineering magazines will testify. It is necessary to be aware that however erudite and interesting in their own right are theories of tray behaviour, they must in the end be translated into the design of pieces of metal which work reliably and at reasonable cost. Thus, those involved with trays span a wide range from those concerned solely with metal fabrication through to researchers into fairly esoteric irreversible thermodynamics. This complex mix of concerns and priorities also provides much of the subject's interest.

It is hoped that most people who deal with distillation trays at any level will find something of value in the pages that follow. However, the book is primarily aimed at the process engineer involved with design who wishes to know more than can be obtained by simply applying correlations. In addition, those concerned with specifying and buying trays should find it useful, as should those troubleshooting malfunctioning columns. I know from experience that it forms a reasonable basis for a graduate course, and the lack of answers to many of the questions posed should also provide a reasonable stimulus for research workers in this area of chemical engineering.

The book had its origins in a course of lectures I gave on distillation in the late 1970s to graduate students at the University of Manchester Institute of Science and Technology. When I was asked to give a course on distillation trays at the University of Aston to practising engineers as part of the continuing education series of the Institution of Chemical Engineers, the idea took hold of developing the material into a book. A further impetus was provided when I joined the Linde Division of Union Carbide, responsible for distillation engineering and development. This helped me put some of the more theoretical material into context as it impacts on the practising engineer.

Although the book was started while I was at UMIST, 95% of it was completed at nights and weekends while working for Union Carbide. In retrospect I doubt whether I would have started it if I had known it would be written outside the cloistered life of the university. In the event, my wife and children were extremely patient and understanding during its completion in spite of my absence from numerous school concerts, baseball games and skiing trips.

There are of course many other people to whom acknowledgement is due. In particular I would like to thank K E Porter who introduced me to the subject and taught me the importance of asking the right questions about research problems. I also appreciated working with the late G L

Preface xiii

Standart, who impressed on me the other aspect – the importance of giving the right answers! A source of inspiration has been the research students with whom I have had the good fortune to work over the years, and this book is built substantially on their efforts. Colleagues who have read the manuscript and contributed suggestions include M R Resetarits and D R Summers to whom thanks are also due, although errors and omissions are of course solely my own responsibility. Mrs Anita Strzalkowski did a sterling job of transforming my ill-written scrawl into a typewritten manuscript with good-humour and patience, and J D Augustyniak drew the figures with his usual skill and attention to detail. Finally I would like to thank the directors of Union Carbide for permission to publish the book.

Acknowledgements

The author is grateful to the following organisations for permission to reproduce or adapt figures which have been published by other authors. American Institute of Chemical Engineers: Figs. 4.3 and 9.20; Energy Publications: Figs. 5.1 and 5.6; Glitsch, Inc.: Fig. 5.2; Institution of Chemical Engineers: Figs. 1.3, 1.6, 2.2, 2.4, 2.8, 2.12, 2.18, 2.20, 2.21, 2.22; Pergamon Press, Ltd.: Figs. 2.3, 2.7, 2.11, 2.13, 2.14; VCH Verlagsgesellschaft: Figs. 4.2 and 5.7.

Nomenclature

Unless otherwise stated locally, the units used are as given below. In particular, the following units should be used in equations which are not dimensionless. The nomenclature of the original sources has been retained as far as possible. The terms gas and vapour are used interchangeably.

- A Cross-sectional area, m²
- A Constant in eqn. (4.11)
- A Defined by eqn. (9.32)
- A_b Tray bubbling area, m²
- A_d Downcomer cross-sectional area, m²
- A'_{da} Area under splash baffle, m²
- A_h Area of holes in tray deck, m²
- A_n Net area for liquid disengagement above tray, m²
- A_{sc} Curtain area of 'closed' valves, m²
- Av Area of valve disk, m²
 - a Interfacial area per unit volume of two-phase dispersion, m² m⁻³
 - a Parameter describing jet shape, eqn. (2.17)
 - a Parameter in eqn. (2.31)
 - a Defined by eqns. (10.8)
 - a' Interfacial area per unit volume of vapour, m² m⁻³
 - \bar{a} Interfacial area per unit volume of liquid, m² m⁻³
 - B Defined by eqns. (9.32)
- B_s Oscillation number, eqn. (5.23)
- b Intercept of equilibrium line (binary)
- b Constant in eqn. (4.16)
- b Defined by eqns. (10.8)
- C Defined by eqn. (3.25)
- C Defined by eqn. (9.32)
- C_d Discharge coefficient


```
Nomenclature
 xvi
      C<sub>0</sub> Drop drag coefficient
     CF
            Capacity factor based on A_b, m s<sup>-1</sup>
     CF'
            Capacity factor based on A_n, m s<sup>-1</sup>
    CF" Capacity factor from Fig. 5.1, m s<sup>-1</sup>
          Theoretical maximum capacity factor, eqn. (5.10), m s<sup>-1</sup>
  CF_{\max}
    CF<sub>0</sub> Capacity factor at zero liquid load, m s<sup>-1</sup>
       c Velocity of sound, m s<sup>-1</sup>
       D Column diameter, m
       D Defined by eqn. (9.32)
D_{\rm G}, D_{\rm L} Diffusion coefficient in vapour and liquid phase, m<sup>2</sup> s<sup>-1</sup>
      D<sub>L</sub> Diffusion coefficient in liquid phase at infinite dilution, m<sup>2</sup> s<sup>-1</sup>
      De Eddy diffusivity for liquid mixing, m<sup>2</sup> s<sup>-1</sup>
    De_G Eddy diffusivity for vapour mixing, m<sup>2</sup> s<sup>-1</sup>
      d<sub>b</sub> Bubble diameter, m
      d_{\rm bs} Sauter mean bubble diameter, m
      d_{\rm h} Hole diameter, m
           Jet diameter, m
           Drop diameter, m
      d_{\rm p}
           Mean drop diameter, m
     d_{\rm ps}
           Sauter mean projected drop diameter, m
           Diameter of drops in subgroup i, m
   d_{p}(j)
     E^+
           Liquid entrainment rate, kg-mol s<sup>-1</sup>
     E_{\rm H}
           Hausen tray efficiency
E_{\rm HL}, E_{\rm HV} Hausen liquid and vapour tray efficiency
     E_{\mathrm{m}}
           Liquid entrainment rate, kg s<sup>-1</sup>
   E_{\mathsf{ML}}
           Murphree liquid phase tray efficiency
           Murphree vapour phase tray efficiency
   E_{MV}
          Apparent Murphree vapour phase tray efficiency
   E_{MV}^{a}
           Vaporisation tray efficiency for component i on tray n
     E_{ni}^{\rm v}
     E_0
          Section efficiency
          Murphree vapour phase point efficiency
   E_{OG}
     E_{s}
          Standart material efficiency
          Standart enthalpy efficiency
    E_{\mathrm{SH}}
          Standart component efficiency
E_{\rm TL}, E_{\rm TV} Thermal efficiency in liquid and vapour phase
           Liquid entrainment rate \div vapour rate, (kg-mol s<sup>-1</sup>) \div (kg-mol s<sup>-1</sup>)
          Liquid entrainment rate \div vapour rate, (kg s^{-1}) \div (kg s^{-1})
         E^+/L_0
     e_0
      F Defined by eqn. (9.39)
   F(j) Number fraction of drops having size d_n(j)
          Hole F factor, u_h \rho_G^{0.5}, kg<sup>0.5</sup> m<sup>-0.5</sup> s<sup>-1</sup>
          Critical value of hole F factor
(F_h)_{crit}
```


Nomenclature xvii

- F_R Reaction at the plate, N
- F_s Superficial F factor, $u_s \rho_G^{0.5}$, $kg^{0.5} m^{-0.5} s^{-1}$
- F_w Frictional force due to walls, N
- F_r Force, N
- FF Flood factor or fractional approach to flooding
- FP Flow parameter, eqn. (1.1)
- Fr Froude number, u_s^2/gh_{cl}
- Fr' Modified Froude number, $Fr \rho_G/(\rho_L \rho_G)$
- Fr_1 Froude number for liquid flow, $u_{L1}/(gh_1)^{0.5}$
- Fr_h Froude number, $u_h[\rho_G/gh_{cl}(\rho_L-\rho_G)]^{0.5}$
- f Friction factor for froth flow
- f_i Fraction of vapour flow carried by bubbles of species i
- $\bar{f}_{ni}^{L}, \bar{f}_{ni}^{v}$ Fugacity of component i in liquid and vapour leaving tray n, bar
 - G Vapour flow rate, kg-mol s⁻¹
 - G Defined by eqn. (9.39)
 - G' Vapour flow rate per unit bubbling area, kg-mol s⁻¹ m⁻²
 - G_{ii} Matrix coefficients defined by eqn. (10.8)
 - q Acceleration due to gravity, m s⁻²
 - H Vapour enthalpy, kJ (kg-mol)⁻¹
 - H Defined by eqn. (9.39)
 - h Liquid enthalpy, kJ (kg-mol)⁻¹
 - h Distance from tray floor, m
 - $\Delta h(i)$ Height increment at height h(i), m
 - h_{cl} Clear liquid height, m
 - $h_{\rm clD}$ Dynamic liquid head at tray floor, m
 - $(h_{cl})_{ow}$ Height of clear liquid flowing over weir, m
 - h_{cli} Clear liquid height at liquid entry, m
 - h_{co} Height of clear liquid in exit calming zone, m
 - h'_{de} Head loss for liquid flowing under splash baffle, m of liquid
 - h_{DT} Dry tray pressure drop, m of liquid
 - h'_{DT} $h_{DT} + h_{R}$, m of liquid
 - h_f Height of two-phase dispersion on tray, m
 - $h_{\rm fd}$ Froth height in downcomer, m
 - h_G , h_1 Heat transfer coefficients in vapour and liquid phases, kW m⁻² K⁻¹
 - h, Depth of liquid at liquid entry, m
 - h_i Jet height, m
 - $h_{\rm L}$ Depth of liquid in vessel, m
 - $h_{\rm m}$ Head of liquid measured by manometer, m of liquid
 - h_n Pressure increase across the nappe, m of liquid
 - h_{ow} Height of froth flowing over weir, m
 - $h_{\rm R}$ Residual pressure drop, m of liquid
 - $h_{\rm udc}$ Pressure drop for flow under downcomer, m of liquid
 - h_w Weir height, m

Nomenclature xviii Wet (or total) tray pressure drop, m of liquid Clearance under downcomer, m h_1 h_1, h_2 Depth of liquid at positions 1 and 2, m i Height increment number j Drop subgroup number K Coefficient in eqn. (4.20) K_{ni} Ideal solution K value for component i on tray n Overall mass transfer coefficient based on vapour, kg-mol s⁻¹ m⁻² $K_{\rm OG}$ K'_{OG} Overall mass transfer coefficient based on vapour, m s⁻¹ $K_{\rm w}$ Parameter used in eqn. (4.10) K_1, K_2 Constants in eqn. (5.17) k Correction factor, eqn. (3.17) Correction factor, eqn. (3.32) k_G Vapour phase mass transfer coefficient, kg-mol s⁻¹ m⁻² Vapour phase mass transfer coefficient, m s⁻¹ Liquid phase mass transfer coefficient, kg-mol s⁻¹ m⁻² $k_{\rm L}$ k'_L Liquid phase mass transfer coefficient, m s⁻¹ L Liquid flow rate, kg-mol s^{-1} L_0 Liquid flow rate on tray in absence of entrainment or weeping, Figs. 9.11, 9.14, kg-mol s⁻¹ $L_{\rm w}$ Weeping rate, kg-mol s⁻¹ Weeping rate per unit tray area, kg-mol s⁻¹ m⁻² l Latent heat, kJ (kg-mol) $^{-1}$ l Maximum valve lift, mm 1 Parameter in eqn. (2.32), m M Molecular weight, kg (kg-mol)⁻¹ M_G Vapour flow rate, kg s⁻¹ Liquid flow rate, kg s⁻¹ M_{L} Valve mass, kg $M_{ m V}$ Slope of equilibrium line (binary) $\Delta v/\Delta x$ defined variously by eqns. (10.2), (10.4), (10.6) m Molar flux, kg-mol s⁻¹ m⁻² NNumber of completely mixed liquid pools N N_{A} Number of actual trays Number of binary vapour phase transfer units $N_{\rm G}$ Number of binary liquid phase transfer units, eqn. (8.12) $N_{\rm L}$ Number of binary liquid phase transfer units, eqn. (8.22) $N_{ m L}'$ Number of overall binary vapour phase transfer units $N_{\rm OG}$ $N_{\mathfrak{v}}$ Total rate of drop generation per unit tray area, m⁻² s⁻¹ N_{T} Number of theoretical trays Tray number from bottom of column

Nomenclature xix

- n Total number of bubble subgroups
- n Number of holes in area A_b
- n Parameter in eqn. (2.26)
- n Parameter describing jet shape, eqn. (2.17)
- n_1, n_2 Number of light and heavy valves, respectively
 - P Pressure, N m⁻²
 - $P_{\rm b}$ Pressure within bubble, N m⁻²
 - P_c Chamber pressure, N m⁻²
 - P₁ Excess pressure in bubble due to liquid inertia, N m⁻²
 - P_s Pressure above liquid surface, N m⁻²
 - ΔP_R Residual pressure drop, N m⁻²
 - P_1^d Pressure at position 1 for dry tray, N m⁻²
 - P_1^{w} Pressure at position 1 for wet tray, N m⁻²
- ΔP_{12} Pressure difference between 1 and 2, N m⁻²
 - Pe Liquid Peclét number, $Q_LD/Wh_{cl}De$ for two-dimensional model or $Q_LZ/Wh_{cl}De$ for one-dimensional model
 - Pe_G Vapour Peclét number
 - p Hole pitch, m
 - Q_G Gas or vapour flow rate, m³ s⁻¹
 - Q_F Froth flow rate, m³ s⁻¹
 - Q_h Gas flow rate through hole, m³ s⁻¹
 - Q_L Liquid flow rate, m³ s⁻¹
 - Q_n Rate of heat loss from tray n to the surroundings, kW
 - *a* Heat flux, kW m⁻²
 - R_h Hydraulic radius, m
 - Ref Reynolds number for flowing two-phase mixture
 - Reh Reynolds number for vapour flow through hole
 - r Bubble radius, m
 - r Ratio of N_1 to total flux
 - r_h Hole radius, m
 - $r_{\rm m}$ Manometer tube radius, m
 - r_n Fraction of heat lost by vapour from tray n
 - S Stabilisation index, $N m^{-1}$ or $N^2 m^{-2}$
 - S Effective liquid flow path width for circular tray, m
- SF System factor
- $Sc_{\rm G}, Sc_{\rm L}$ Schmidt number $(\mu_{\rm G}/\rho_{\rm G}D_{\rm G})$ or $\mu_{\rm L}/\rho_{\rm L}D_{\rm L}$
 - s Distance of bubble centre from tray surface, m
 - s Parameter in drop size distribution, eqn. (2.33)
 - s Distance normal to curved wall, m
 - s' Parameter in drop size distribution, eqn. (2.31)
 - T Temperature, K
 - T_{Ln} Temperature of liquid leaving tray n, K

xx Nomenclature

- T_{Ln}^* Bubble point temperature of liquid leaving tray n, K
 - $T_{\rm s}$ Tray spacing, m
- T_{Vn} Temperature of vapour leaving tray n, K
- T_{Vn}^* Dew point temperature of vapour leaving tray n, K
 - t Time, s
 - t Tray thickness, m
 - t_G Mean residence time of vapour in dispersion, s
 - t_L Mean residence time of liquid on tray, s
 - u Gas velocity in jet, m s⁻¹
 - $u_{\rm b}$ Bubble rise velocity, m s⁻¹
- $u_{\rm b0}$ Terminal rise velocity of isolated bubble, m s⁻¹
- $u_{\rm d}$ Liquid velocity in downcomer on vapour-free basis, m s⁻¹
- $u_{\rm dc}$ Critical value of $u_{\rm d}$ for downcomer choking, m s⁻¹
- $u_{\rm f}$ Mean horizontal froth velocity, m s⁻¹
- $u_{\rm G}$ Mean vapour velocity through dispersion, m s⁻¹
- u_h Gas velocity through hole(s), m s⁻¹
- $u_{\rm L}$ Mean liquid velocity across tray, m s⁻¹
- u_{L1} Liquid velocity at position 1, m s⁻¹
 - u_s Superficial vapour velocity based on A_h , m s⁻¹
 - $u'_{\rm s}$ Superficial vapour velocity based on $A_{\rm n}$, m s⁻¹
- $u_{\rm smax}$ Maximum value of $u_{\rm s}$, m s⁻¹
- $(u_s)_{OBP}$, $(u_s)_{CBP}$ Value of u_s at open and closed balance points, m s⁻¹
 - V_b Bubble volume, m³
 - V_c Chamber volume, m³
 - V_i Liquid molar volume at normal boiling point, cm³ (g-mol)⁻¹
 - v Drop velocity, m s⁻¹
 - v_0 Fraction of open valves
 - $v_{\rm p}$ Drop projection velocity, m s⁻¹
 - W Weir length, m
 - We Weber number
 - $w, w_1 \quad w = w'/D, w_1 = W/2D$
 - w' Distance from centre line measured parallel to weir, m
 - X Mole fraction in pseudo-binary liquid mixture
 - x Mole fraction in liquid
 - x_{in} Tracer concentration at tracer injection point
 - x_0 Tracer concentration in liquid entering tray
 - x_R Mole fraction in liquid leaving reboiler, Fig. 9.5
 - x^{L} Mole fraction of low surface tension component x_{+} Value of x immediately downstream of liquid entry
- x_{en-1}^* Mole fraction of liquid in equilibrium with vapour entering tray n
 - $\bar{x_n}$ Mean mole fraction in liquid leaving tray n via downcomer

Nomenclature xxi

- x_n^* Mole fraction of liquid in equilibrium with mean vapour concentration leaving tray n
- x'_n Mole fraction in liquid weeping or entrained from a point on tray n
- $\vec{x_n}$ Mean mole fraction in liquid weeping or entrained from tray *n* averaged over the tray
- Y Mole fraction in pseudo-binary vapour mixture
- \bar{Y}_n Defined by eqn. (9.24) for entrainment, eqn. (9.33) for weeping
- y Depth below free surface, m
- y Parameter in eqns. (2.31), (2.33)
- y Mole fraction in vapour
- y_n Value of y in vapour leaving a point on tray n
- \bar{v}_n Mean value of y in vapour leaving tray n
- y* Mole fraction in vapour which is in equilibrium with liquid
- y_n^* Mole fraction in vapour in equilibrium with mean concentration of liquid leaving tray n via the downcomer
- Z Parameter in eqn. (4.19)
- Z Liquid flow path length, m
- Z_e Length of exit calming zone, m
- $Z_{\rm F}$ Film thickness, m
 - z Distance normal to interface, Chapter 8, m
 - z = z'/D in two-dimensional model; z = z'/Z in one-dimensional model
- z' Distance from inlet weir, m
- z_1 Value of z at exit weir
- $z_{\rm in}$ Value of z at tracer injection point
- α Volume of liquid per unit volume of two-phase dispersion (liquid holdup fraction)
- α Relative volatility, eqn. (7.23)
- α Similarity ratio, Chapter 9
- α_d , $\bar{\alpha}_d$ Local and mean liquid volume fraction in the downcomer
 - α_e Effective liquid volume fraction defined by eqn. (3.24)
 - $\alpha(i)$ Local liquid volume fraction at height h(i)
 - α_R Liquid volume fraction in froth flowing under downcomer
- $\alpha_{OG}, \alpha_{G}, \alpha_{L}$ Parameters in eqns. (10.7)
 - β_0 Fractional weeping rate, L_w/L_0
 - γ Parameter in eqns. (10.10)
 - y_{ni}^{L} Activity coefficient of component i in liquid leaving tray n
 - ε Volume of gas or vapour per unit volume of two-phase dispersion (gas holdup fraction)
 - $\varepsilon_{\rm w}$ Value of ε in froth flowing over weir
 - ε'_1 Local volume fraction of small bubbles
 - $\eta = \varepsilon/(1-\varepsilon)$, eqn. (3.10)
 - θ Contact angle
 - $\theta(ij)$ Residence time of drops j in height increment at height h(i), s

xxii Nomenclature

- λ Stripping factor or ratio of slope of equilibrium line to slope of operating line, mG/L
- $\lambda_0 = mG/L_0$
- μ_G, μ_L . Vapour and liquid viscosity, $N\,s\,m^{-2}$
 - v Volume fraction of drops having diameter less than y, eqn. (2.31)
 - ξ Orifice coefficient
 - ξ' Modified orifice coefficient, eqn. (4.18)
 - ξ_0 Orifice coefficient as $\phi \to 0$, Fig. 4.2
 - ξ_{VC} Orifice coefficient for valves resting on tray deck
 - ξ_{VD} Orifice coefficient for valve tray deck
 - ξ_{Vi} Orifice coefficient for combination of light and heavy valves
 - ξ_{VO} Orifice coefficient for open valves
 - $\rho_{\rm F}$ Density of two-phase dispersion, kg m⁻³
- $\rho_{\rm G}, \rho_{\rm L}$ Vapour and liquid density, kg m⁻³
- $\rho'_{\rm G}, \rho'_{\rm L}$ Vapour and liquid density, kg-mol m⁻³
 - $\rho_{\rm H,O}$ Density of water, kg m⁻³
 - σ Surface tension, N m⁻¹
- $\sigma^+, \sigma^-, \sigma^0$ Surface tension positive, negative or neutral system
 - ϕ Fractional perforated tray area (hole area/bubbling area); also called fractional free area
 - ϕ_A Association factor
 - ψ Defined by eqn. (3.22a), m
 - ψ Parameter in eqn. (10.5)
- $\mathcal{N}_{\text{OG}}, \mathcal{N}_{\text{G}}, \mathcal{N}'_{\text{L}}$ Number of overall vapour phase, vapour phase and liquid phase ternary transfer units

Subscripts

- b In bulk phase
- G In gas or vapour phase
 - i For bubble subgroup i
 - i For component i
 - i At interface
- ij For the binary ij
- j For the jet
- j For component j
- L In liquid phase
- n Leaving tray n
- V In vapour phase
- 1 or 2 For component 1 or 2, respectively *or* for small or large bubbles, respectively

Superscripts

- e Exit stream from ideal tray
- 0 Local value at the exit weir

Nomenclature xxiii

- Mean value
- ·, · First and second derivatives with respect to time
- " Entering value used in ideal tray definition, Fig. 7.1