

Cambridge University Press 978-0-521-10424-1 - Two-Phase Flows in Chemical Engineering David Azbel Table of Contents More information

CONTENTS

	Preface	<i>page</i> xi
	List of symbols	XIV
	PART I: HYDRODYNAMICS OF TWO-PHASE	
	FLOWS	1
1	The phenomenon of two-phase flows	3
	References	9
2	Single-bubble formation	10
2.1	Introduction	10
2.2	Buoyancy and surface tension alone	10
2.3	Buoyancy, drag, surface tension, and inertia	12
2.4	Time-dependent gas flow rate	17
2.5	Energy loss due to surface tension and drag forces	19
2.6	Transition to continuous gas flow (jets)	23
	References	25
3	Mass bubbling	27
3.1	Introduction	27
3.2	Turbulence in mass bubbling	28
3.3	Maximum velocity of a bubble in the turbulent flow	30
3.4	Size of bubbles in mass bubbling	33
3.5	Specific phase contact area	39
	References	49
4	The dynamic two-phase flow	51
4.1	Introduction	51
4.2	Rapid bubbling with ideal liquid	53
4.3	Rapid bubbling with real liquid	61
4.4	Main parameters of the two-phase flow in the slow-bubbling	
	regime	66
4.5	Main parameters of the two-phase flow with dissipation and inertia	71
4.6	Effect of static liquid height and equipment diameter on the void	
	fraction	77
	References	78
		vii

Cambridge University Press 978-0-521-10424-1 - Two-Phase Flows in Chemical Engineering David Azbel Table of Contents More information

viii	Contents	
5	Modes of liquid entrainment	80
5.1	Introduction	80
5.2	Liquid cone stability	80
5.3	Entrainment of turbulent eddies	8.
5.4	Entrainment at the liquid free surface during bubbling	91
5.5	Droplet dynamics	102
5.6	Droplet statistics	109
5.7	Similarity analysis	112
	References	120
6	The motion of solid particles in a liquid	121
6.1	Introduction	121
6.2	Average particle flow velocity and average fraction of particles in a liquid flow	121
6.3	Steady motion of solid particles in a laminar viscous flow	124
6.4	Nonuniform motion of solid particles	125
6.5	Effect of system walls on particle velocities in a dilute suspension	129
6.6	Basic equations for the motion of solid particles in a turbulent flow	129
6.7	Microparticles suspended in a turbulent flow	141
6.8	Motion of microparticles in the intensive-bubbling regime	147
6.9	Motion of microparticles in a bubble apparatus with agitators	147
6.10	Motion of a macroparticle suspended in a turbulent flow	149
	References	152
	PART II: MASS TRANSFER IN TWO-PHASE	
	FLOWS	155
7	Mass transfer at the phase boundary in bubble and droplet	
	processes	157
7.1	Introduction	157
7.2	The film model	158
7.3	The penetration model	161
7.4	Modified penetration models	162
7.5	Effects of mass-transfer coefficients and contact areas	169
7.6	Calculation of the mass-transfer coefficient in a liquid phase	170
7.7	Effect of the superficial gas velocity on the mass-transfer coefficient	178
7.8	Effect of the void fraction on the mass-transfer coefficient	179
7.9	Mass transfer from a single bubble	180
7.10	Decay of the mass-transfer coefficient k_f with bubble age	188
7.11	Real mass-transfer coefficients and surface contact areas	189
7.12	Mass transfer from a single bubble suspended in a turbulent stream	101
7.13	Mass transfer for a bubble swarm	191
7.14	Experimental data on mass transfer into a liquid phase	193 196
,.17	References	208

Cambridge University Press 978-0-521-10424-1 - Two-Phase Flows in Chemical Engineering David Azbel Table of Contents More information

	Contents	ix
8	Mass transfer in liquid-solid particle systems	211
8.1	Introduction	211
8.2	Parameters used for calculation of the mass-transfer coefficient	215
8.3	Mass transfer to a microparticle suspended in a turbulent flow	220
8.4	Mass transfer to a macroparticle suspended in a turbulent flow	229
	References	239
	PART III: APPLICATION TO CHEMICAL AND	
	BIOCHEMICAL PROCESSES	241
9	Chemical applications	243
9.1	Introduction	243
9.2	Noncatalytic oxidation	245
9.3	Catalytic oxidation of hydrocarbons	252
9.4	Macrokinetics of liquid-phase oxidation of hydrocarbons	255
9.5	Estimation of air supply requirements for processes in the kinetic zone	258
9.6	Ideal displacement, and ideally mixed, reactors for liquid-phase	230
9.0	oxidation of hydrocarbons	263
9.7	Calculation of optimal gas and liquid supply to a continuous	
	sparged reactor for the liquid-phase oxidation of hydrocarbons	270
9.8	Calculation for a sparged-type reactor for the liquid-phase	
	oxidation of hydrocarbons	275
9.9	Influence of scaling-up calculation of a sparger reactor for liquid-	
	phase oxidation of hydrocarbons	280
	References	281
10	Reactor design for microbiological processes	283
10.1	Introduction	283
10.2	The limiting stage in biochemical processes	283
10.3	Effect of mixing intensity and air feed on the rate of oxygen	
	dissolution	286
10.4	Effect of various parameters on accumulation of enzymic activity	290
10.5	Mass-transfer effects in the kinetics of biochemical processes	294
10.6	Experimental verification of theoretical equations	298
10.7	Method of design of a biochemical reactor	303
	References	305
	Index	307