Contents

Preface xiv

Part I Overview 1

Chapter 1 The search for hidden structures 3
Brain waves 3
Hidden cycles 5
Detecting hidden changes 7

Chapter 2 The ubiquitous cycles 10
Frequency decomposition 12
Introduction to frequency-domain analysis 13
Periodic functions 14
The fastest frequency we can detect 15
Case example: traffic fatalities data 17
Approximation 19
Fourier approximation: visual demonstration 21
Finding hidden periodicities: intuitive overview 22
Example of detecting hidden cycles 23

Chapter 3 How Slutsky created order from chaos 28

Chapter 4 Forecasting: Yule’s autoregressive models 33

Chapter 5 Into the black box with white light: time-series models 35
Example: the conversations of young friends 38

Chapter 6 Experimentation and change 41
Historical overview of time-series analysis 41
Conceptual overview of time-series analysis 42
Some questions that can be asked using time-series analysis 43
Levels of causal inference in time-series analysis 45
Contents

Part II Time-series models

Chapter 7 Models and the problem of correlated data
 The interrupted time-series experiment revisited 55
 Beware the interocular test 57
 How autocorrelation affects confidence intervals for the mean 59

Chapter 8 An introduction to time-series models: stationarity
 Stationarity 60
 The Wiener definition of stationarity: a problem with our definition 65
 Autocovariance and autocorrelation 67
 Condition 2 revisited 70
 Examples of nonstationary processes 71
 The shape of the correlogram: a rule of thumb for stationarity 77
 Social interaction: a practical example of examining nonstationarity 78
 Summary 81

Chapter 9 What if the data are not stationary?
 The first alternative: multicomponent model 82
 The second alternative: transformations 88
 Step-by-step approach for nonstationary data 97
 Removing a deterministic component by a moving-average transformation 99

Appendix 9A Deterministic and nondeterministic components 102

Part III Stationary time-domain models

Chapter 10 Moving-average models
 The Slutsky effect 107
 First-order moving-average models 109
 Moving-average models of any order 110
 Second-order moving-average models 113
 Intuitive properties of the MA(q) process 114

Chapter 11 Autoregressive models
 Autoregressive models 114
 First-order autoregressive process 116
 The AR(1) process is not always stationary 118
 Drunkard’s walk 118
Contents

Correlograms for first-order autoregressive models 119
AR(1) example 120
The Yule–Walker equations 121
The stationary AR(1) is an MA model of infinite order 123
The MA(1) is sometimes an AR(∞) 124

Chapter 12 The complex behavior of the second-order autoregressive process 125
The autocovariances of an AR(2) process 126
Stationarity conditions for an AR(2) process 127
Stationarity region for AR(2) 128
The four series 128
The triangular region revisited 133
An example of a nonstationary AR(2) process 135
Summary 141

Chapter 13 The partial autocorrelation function: completing the duality 141
What is the PACF? 142
Estimation using the PACF 144
Examples: heart rate and blood velocity 149
Summary 153

Chapter 14 The duality of MA and AR processes 153
The backward-shift operator 154
The AR/MA duality revisited 156
ARMA or “mixed” processes 157
Roots of polynomials: stationarity and invertibility 158
The Yule–Walker equations again 159
Summary 160

Appendix 14A Matrix algebra primer 160
Appendix 14B The general linear model for regression 167
Appendix 14C The PACF 171
Appendix 14D Stationarity and invertibility conditions for AR and MA processes 174

Part IV Stationary frequency-domain models 179

Chapter 15 The spectral density function 181
The history of frequency-domain approximation 181
The history of the search for hidden periodicities 183
Table of Contents

x Contents

A probabilistic foundation 189
How Yule invented autoregressive models 191
Introduction to spectral decomposition 194
Approximation and simulation 195

Chapter 16 The periodogram
The sine wave 197
Beats 199
Sum of sine waves 201
Statistics as geometry: orthogonal functions 202
Fourier approximation 203
Formal definition of the periodogram 204
Exponential form of the periodogram 207
The Wiener–Khinchine theorem 208
Illustrative computations of the periodogram and the
fast Fourier transform 208
The failure of the periodogram 210
Demonstration of the failure and the solution of
the problem 211

Appendix 16A Orthogonal functions 212
Appendix 16B Removing seasonal components 213
Appendix 16C Detecting a deterministic cycle 214

Chapter 17 Spectral windows and window carpentry
The idea of a spectral window 216
The Daniell window in the time domain and the
Bartlett 1 window 218
Significance testing 222
Comparing spectral density estimates 223
The importance of using a range of bandwidths 224

Appendix 17A Equivalent degrees of freedom for a windowed
spectral density estimate 226
Appendix 17B Equivalent degrees of freedom for a sum of spectral
density estimates 227

Chapter 18 Explanation of the Slutsky effect
The fundamental theorem 228
Spectral density for an MA(q) process 229
Spectral density for an AR(p) process 230
Spectral density for an AR(2) model 232
<table>
<thead>
<tr>
<th>Contents</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part V Estimation in the time domain</td>
<td>237</td>
</tr>
<tr>
<td>Chapter 19 AR model fitting and estimation:</td>
<td></td>
</tr>
<tr>
<td>Mann–Wald procedure</td>
<td>239</td>
</tr>
<tr>
<td>Fitting an autoregressive scheme of any order</td>
<td>240</td>
</tr>
<tr>
<td>Significance testing: three alternatives</td>
<td>242</td>
</tr>
<tr>
<td>Recommendations for model fitting</td>
<td>246</td>
</tr>
<tr>
<td>Fussy model fitting using prewhitening</td>
<td>248</td>
</tr>
<tr>
<td>Appendix 19A Linear least-squares autoregressive model fitting</td>
<td>250</td>
</tr>
<tr>
<td>Appendix 19B Least-squares autoregressive model fitting: asymptotic normal distribution theory</td>
<td>252</td>
</tr>
<tr>
<td>Chapter 20 Box–Jenkins model fitting: the ARIMA models</td>
<td>255</td>
</tr>
<tr>
<td>The ARMA models</td>
<td>255</td>
</tr>
<tr>
<td>Operator notation</td>
<td>256</td>
</tr>
<tr>
<td>Parsimony of the model</td>
<td>256</td>
</tr>
<tr>
<td>ACF and PACF of the ARMA model</td>
<td>257</td>
</tr>
<tr>
<td>How differencing incorporates trend</td>
<td>261</td>
</tr>
<tr>
<td>The degree of differencing</td>
<td>262</td>
</tr>
<tr>
<td>Summary flowchart for identification of p, d, and q</td>
<td>262</td>
</tr>
<tr>
<td>Parameter estimation</td>
<td>264</td>
</tr>
<tr>
<td>Wu–Pandit method</td>
<td>269</td>
</tr>
<tr>
<td>Chapter 21 Forecasting</td>
<td>269</td>
</tr>
<tr>
<td>Introduction</td>
<td>270</td>
</tr>
<tr>
<td>Forecasting moving-average processes</td>
<td>271</td>
</tr>
<tr>
<td>Forecasting autoregressive processes</td>
<td>272</td>
</tr>
<tr>
<td>Forecasting headache pain</td>
<td>273</td>
</tr>
<tr>
<td>Confidence intervals</td>
<td>275</td>
</tr>
<tr>
<td>Chapter 22 Model fitting: worked example</td>
<td>277</td>
</tr>
<tr>
<td>Detect and remove trend</td>
<td>277</td>
</tr>
<tr>
<td>Detect and remove deterministic cycles</td>
<td>278</td>
</tr>
<tr>
<td>Analyze residuals</td>
<td>281</td>
</tr>
<tr>
<td>“Quick and dirty” time-series modeling by hand</td>
<td>285</td>
</tr>
<tr>
<td>Fitting many deterministic cycles</td>
<td>291</td>
</tr>
<tr>
<td>Part VI Bivariate time-series analysis</td>
<td>297</td>
</tr>
<tr>
<td>Chapter 23 Bivariate frequency-domain analysis</td>
<td>299</td>
</tr>
<tr>
<td>Introduction: general concepts</td>
<td>299</td>
</tr>
<tr>
<td>The cross-spectrum</td>
<td>300</td>
</tr>
<tr>
<td>Smoothing and significance testing</td>
<td>306</td>
</tr>
</tbody>
</table>
Contents

Appendix 23A The basis of the confidence intervals of cross-spectral estimates 309
Appendix 23B Alignment of the series to reduce bias in estimating the coherence 310
Chapter 24 Bivariate frequency example: mother–infant play 310
 Introduction 310
 Review of bivariate spectral analysis 311
 Spectral analysis of the Tronick data 312
Chapter 25 Bivariate time-domain analysis 317
 Introduction 317
 Cross-covariance 318
 Cross-correlation 318
 The concept of prewhitening 319
 Transfer function 319
 Estimating the impulse response function 320
 Cross-correlation and autocorrelation 321
 The procedure of Gottman and Ringland 322
Appendix 25A Matrix formulation of the procedure of Gottman and Ringland 329
Part VII Other techniques 333
Chapter 26 The interrupted time-series experiment 335
 Introduction 335
 The problem of autocorrelation 337
 Analysis of interrupted time-series experiments by hand 338
 Extension of the Mann–Wald procedure 342
 Extension of the procedure of AR(p) models 349
Appendix 26A The limiting variance of \(\hat{b}_1 - \hat{b}_2 \) 368
Appendix 26B Steady-state solutions 371
Chapter 27 Multivariate approaches 372
 Time-series regression: intuitive overview 372
 Ordinary least squares 372
 Generalized least squares 373
 Dynamic models 375
 Further remarks on transfer function models 376
 Multivariate spectral analysis 380
 What to read next 380
 The Gottman–Williams computer programs 381
Contents

Appendix I	Proof of the fundamental theorem of linear filtering	383
Appendix II	Transfer-function weights from frequency-domain statistics	384
Notes	385	
References	393	
Index	397	