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CHAPTER 1

Introduction

1.1 History

1.1.1 Beginnings

Even though the Greeks knew about the Euclidean algorithm, there is
no evidence that they used it to form continued fractions.
The first known use of continued fractions is the approximate expression

for V13

3+

N
[N

+

given by R. Bombelli (ca. 1526—1573) in 1572. This is a special case of the
formula

Vai+b —a+ 2 2 .. (1.1.1)

2a+2a+
A second special case of (1.1.1) was given by P. Cataldi (1548-1626) in
1613. He had
V18 =4&2
8&2
8&2

-

8
which he abbreviated as
4& 2 &2 &
8. 8.
Cataldi also discussed the formula (1.1.1).
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2 Introduction 1.1

D. Schwenter in 1625 and C. Huygens (1629-1695) in a posthumous
publication considered the approximants of finite regular continued frac-
tions as a means of expressing large fractions approximately in terms of
fractions involving smaller numbers. Thus Schwenter (but in very awkward
notation) had

m_1 1111
233 1+43+6+4+2°
and Huygens found (in a problem concerned with the construction of
cogwheels)

77708431 _ L, 111 111
2640858 242+1+5+1+4+

He was aware of the fact that the approximants are alternately greater and
smaller than the number and that they provide a best rational approxima-
tion.

The first infinite continued-fraction expansion is due to Lord W.
Brouncker (1620-1686), who was the first president of the Royal Society
of London. Around 1659 he gave

iﬂ+K(@Zﬁ) (1.1.2)

without proof. He probably derived it from the infinite-product formula
for w/2 due to J. Wallis (1616—1703).

It was L. Euler (1707—1783), beginning in 1737, who gave a systematic
development of continued fractions. In his work it became clear that
continued fractions can be employed both in number theory and in
analysis. In this book we shall be concerned almost exclusively with the
analytic theory of continued fractions. Thus it may be useful to give here a
very brief account of some of the major contributors to and some of the
significant results in the number-theoretic part.

1.1.2  Number-Theoretic Results

Regular continued-fraction expansions (see also Section 2.1.2 below) of
real irrational numbers x>0 are of the form

1 1
W T R+

Here the b,(x) are defined by b(x)=[x,], n>0, where xo=x and x,=
1/Frac(x,_,), n> 1, in which [x] denotes the integral part and Frac(x)
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1.1 History 3

denotes the fractional part of x. It follows that all b (x) are positive
integers.

Most of the number-theoretic applications rely on regular continued-
fraction expansions and their approximations to x. A regular continued
fraction by(x)+K(1/b,(x)) always converges to x. Thus there is no
convergence theory to worry about. It is the degree of approximation
which is provided by the nth approximant p,(x)/q,(x) that is most
important.

As we already mentioned, the first examples of regular continued
fractions were given by Schwenter and Huygens. In 1685 Wallis computed
the first 35 b,(x) for x=m. All three authors appear to have been aware of
the fact that the approximants p,(x)/q,(x) provide a best rational ap-
proximation to x in the sense that

1, (1.1.3)

S
vV

|bx—al|>|q,(x)x~p,(x)],

provided a and b are integers relatively prime to each other and 0<b <
q,(x).

J. L. Lagrange (1736-1813) contributed many results to the theory of
regular continued fractions. He showed that quadratic irrational numbers
are exactly the numbers that have periodic expansions (from some » on).
The inequality

< ! n>1, (1.1.4)

[Pn(x)]zbn+l(x) ,

1x_ Pa(%)
4,(x)

is also due to him, as is a solution of the Pell equation
u’—Dv*=1, D apositive integer. (1.1.5)

The solutions are pairs {p,(VD), q,,(\/B )> for certain values of n.
A. Legendre (1752-1833) gave a complete solution of the problem. Partial
solutions had already been given by Euler. The equation is of interest in
part because it can be used to solve problems in addiiive number theory
such as the resuit:

Every prime number of the form 4n+1 is the sum of two squares.

This result was conjectured by P. Fermat (1601-1665) and first proved by
Euler. A proof based on continued fractions was given by C. F. Gauss
(1777-1855).

E. Galois (1811-1832), in his first published paper, investigated certain
periodic regular continued fractions. He determined the value of the dual
periodic regular continued fractions (see Section 3.3 below).
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4 Introduction 1.1

The first to prove that there exist transcendental (non-algebraic) num-
bers was J. Liouville (1809-1882). In 1851 he observed that algebraic
numbers cannot be approximated too closely by rationals. He proved that
if ¢ is the solution of an irreducible polynomial equation, with integer
coefficients, of degree n, then there exists a constant 0<c <1 such that for
all integers p and ¢

‘f’-—g‘>i,,, n>1. (1.1.6)
q q

Using this result he was able to exhibit an infinite number of transcenden-
tal numbers. Among these are those x whose regular continued-fraction
expansions satisfy the inequality

by +1(x)>[ p, (x)]™ (1.1.7)

for some sequence {n,} of integers. That these numbers must be transcen-
dental follows from Lagrange’s estimate (1.1.4), which leads to

Pn(X) _x\< 1
q”h(x) [p"h(x)]n;,+2’

which would contradict (1.1.6) if x were algebraic.
A later result, due to Hurwitz (1859-1919) [1891], is that

1
q*V5

always has an infinite number of rational solutions p/q. E. Borel (1871~
1956) [1903] gave a simple proof of this by observing that among any three
consecutive approximants of the regular continued-fraction expansion of x
there is at least one which satisfies (1.1.8). Hurwitz also showed that V5 is
the smallest value for which this result is true for all x.

A measure-theoretic flavor was added to the theory by Borel {1909] and
F. Bernstein (1878—1956) [1912], who proved that for almost all x, 0<x <1,
the sequence {b,(x)} is unbounded. A. Khintchine (1894-1959) made
further contributions in this direction (he called it the metric theory of
continued fractions). We quote two of his results.

d
x—=|< 1.1.8
-2 (119)

1. For almost all x

limsup\/bl(x)bz(x). b (x) <ee\/2logz )

n—oo

[Khintchine, 1924].
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1.1 History 5

2. There exists a constant y, independent of x, such that for almost all x
Lim Va.(x) =7
[Khintchine, 1936].
1.1.3  Analytic Theory

Euler made important contributions to the analytic theory. He gave
continued-fraction expansions (always without convergence considera-
tions) of integrals and power series, including divergent ones. He also
showed how Brouncker’s expression for 4 /7 could be derived from either
Wallis’s product formula or the Gregory-Leibniz alternating series for 7 /4.
Another of Euler’s contributions was a solution of the Riccati differential
equation in terms of continued fractions.

J. H. Lambert (1728—-1777) expanded log(l+ x), arctan x and tan x in
continued fractions in 1768. His work is particularly noteworthy because it
contains an adequate discussion of the convergence of the continued
fraction to the function in question. Lagrange found expansions for (1+ x )™

and
f" dt
o 1+~

In a paper published only in 1813 (well after his death), Euler found an

Og 1 .

Since Euler, Lambert and Lagrange at different times were all members of
the Berlin Academy, one wonders whether they ever discussed their work
on continued fractions.

A method for obtaining approximate solutions of polynomial equations
with numerical coefficients, using regular continued-fraction expansions,
was worked out by Lagrange in 1769 and 1770 [Lagrange, 1867].

Besides applying continued fractions to number theory, Gauss [1813,
1814] employed them in analysis. In the study of hypergeometric series he
generalized the earlier work of Euler, Lambert and Lagrange by giving
continued-fraction expansions for ratios

F(a,b;c;z)
F(a,b+1;c+1;2)

of hypergeometric functions (see also Section 6.1.1). In a second paper on
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6 Introduction 1.1

mechanical quadratures, that is, on the approximate evaluation of in-
tegrals, he considered

f+lf(t)dt= é Yu(x{) f(x{) +error. (1.1.9)
-1 k=1

He showed that y,(x) and x{", ..., x{ can be chosen, independent of f, so
that equality holds in (1.1.9) for all polynomials f(x) of degree not
exceeding 2n— 1. To obtain this result he made use of

+1 dt z+1
f =log

—1 Z+t_ z—1

4/3-5) -, (1.1.10)

_2 1/3 9/(57)

which he had derived in his previous paper. It turns out that the function
v,(x) can be expressed in terms of the numerator P,(x) and the denomina-
tor Q,(x) of the nth approximant of the continued fraction (1.1.10). The
numbers x{”,..., x{" are the zeros of the polynomial Q (- x).

The sequence {Q,(x)} satisfies

f+lQ,,(t)Qm(z)dt=o, m#n, (1.1.11)
-1

that is, it is a sequence of orthogonal polynomials with respect to the
weight function 1 and the interval —1<¢<1. As was first observed by
C. G. Jacobi (1804—1851) [1827], the Q,(x) are exactly the polynomials
obtained by Legendre in 17841789 in connection with his investigations
concerning the attraction of $pheroids and the shape of planets. Jacobi
[1826] had previously devoted a paper to Gauss’s quadratures, deriving the
result without using continued fractions. He relied instead on the formula
(1.1.11). (According to Bell [1940] the name “orthogonal” was introduced
only in 1833-1835 by R. Murphy.)

The nineteenth century proved to be a golden age for the analytic theory
of continued fractions. Study of special functions as well as actual compu-
tational results (for example in quadratures) were still in the foreground,
and it is here that continued-fraction techniques could be of use. Ap-
parently many mathematicians were familiar with continued fractions, and
a large number used them in their research and/or helped to develop the
analytic theory.

Besides the expansions already mentioned, new continued-fraction ex-
pansions for special functions were found by Laplace, Legendre, Jacobi,
Eisenstein, Schlomilch and Laguerre. Heine in 1846, 1847 worked on
hypergeometric functions. The question of convergence of the continued
fractions for the ratios of hypergeometric functions, which had been left
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1.1 History 7

open by Gauss, attracted the attention of Riemann and was satisfactorily
disposed of by Thomé [1867].

Investigations into the problem of expanding arbitrary power series into
continued fractions were begun by Stern [1832] and Heilermann [1846] and
continued by G. Frobenius (1849-1917) [1881] and Stieltjes among others.
They studied in particular regular C-fractions and associated continued
fractions. Towards the end of the century Frobenius [1881] and H. Padé
(1863-1953) [1892] developed an even more general scheme for expanding
a formal power series P(z) into rational functions. The resulting double-
entry table is known as the Padé table of P(z).

Even though he was active mainly in the twentieth century, this is
probably the place to mention S. Ramanujan (1887-1920) “whose mastery
of continued fractions was on the formal side at any rate, beyond that of
any mathematician in the world” (G. H. Hardy in the Introduction to
Ramanujan’s Collected Papers [1927]). Ramanujan gave no proof of his
formulas. The merit of having put them on a solid foundation belongs to
G. N. Watson [1929, 1939, and elsewhere], Preece [1929, 1930] and Perron
[1952, 1953, 1958a,b].

A problem that proved to be especially fruitful in stimulating research in
continued fractions throughout the nineteenth century and into the
twentieth was Gauss’s mechanical quadrature. Four interrelated questions
grew out of this problem. We shall state these in terms of Stieltjes integrals
that were introduced by Stieltjes as a tool in the study of these problems.
For this purpose we let y(r) denote a (fixed) bounded, non-decreasing
function. The four questions are then as follows:

1. To determine functions v,(x) and constants x{",..., x{” so that
00 n
[ A0y dw(t)= Z v, (x)f(x§) +error,
~ o0 k=1

with error=0 if f(7) is a polynomial of degree up to 2n—1.
2. To express
f°° dy(t)

e 2+t

as a continued fraction and to explore its region of convergence.

3. To find a sequence {Q,(x)} of polynomials which is orthogonal with
respect to the weight distributions dy(¢).

4. To expand “arbitrary” functions in terms of a sequence {Q,(x)} of
orthogonal functions as

fx)= 2 ¢,.0.(x)

n=0

and to study the convergence.
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8 Introduction 1.1

Contributions to one or more of these topics were made by many of the
best analysts of the nineteenth century. Not all of them used continued
fractions. Of those who did, Tchebycheff and Stieltjes were the most
successful, but there are also important investigations by Christoffel,
Rouché and Markoff, among others.

P. Tchebycheff (1821-1894) used continued fractions in more than
twenty of his papers. The first of these was in 1854, the last in the year of
his death. He was quite successful in obtaining results on all the problems
mentioned above. Since Tchebycheff considered it unimportant to read the
current mathematical literature, he was probably unaware of the fact that
T. Stieltjes (1856—1894), beginning in 1884 and partly inspired by a paper
of Tchebycheff [1858], was solving many of the problems that Tchebycheff
was working on. It is ironic that one of Tchebycheff’s maxims was that
effort devoted to the study of the work of others detracted from the
originality of one’s own work. When both men died within a month of
each other in 1894, Stieltjes had outdistanced Tchebycheff considerably,
having (among other results) obtained continued-fraction expansions

—_ = = =y a,>0, n>1,

and full knowledge of their convergence behavior for integrals

© dy(1)
j; z+t

Stieltjes had been in poor health since 1890 and achieved these results by a
last determined effort. His interest in these problems came not only from
the quadrature problem but also from the problem of “summing” certain
divergent series. By one of the coincidences so frequent in the history of
mathematics, both Stieltjes (in his thesis [1886]) and H. Poincaré (1854-
1912) [1866] made important contributions to this subject in the same year.
Both were in Paris at the time, but they evidently did not know of each
other’s work. That the theory of asymptotic series, which they both
studied, could make use of continued fractions had already been suggested
by E. Laguerre (1834-1886) in 1879 and was known to C. Hermite
(1822~-1901). For asymptotic series Stieltjes used the term “semi-
convergent,” which had been in use at that time with a slightly more
narrow meaning. Hermite was Stieltjes’s protector and friend. They corre-
sponded regularly from 1882 to 1894, and Hermite was one of the

examiners on Stieltjes’s thesis. The others were Darboux and Tisserand.
The theory of moments, proposed and established by Stieltjes, also
answered some questions about asymptotic expansions. By determining a
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1.1 History 9

function y(7) which was connected to a given sequence {c,} by
o0
c,= —1)"dy(t),
.= f(0rau)

he was able not only to solve the moment problem but also to provide a
function (in terms of a continued fraction) for which the series

o0
> ckz"‘
k=0

is an asymptotic expansion at oo (see Chapter 9).

Both F. Klein (1849-1925) and D. Hilbert (1862—1943) took an interest
in the work of Stieltjes. Hilbert had actually met Stieltjes when he visited
Paris in 1886, and sent him reprints of his publications. Hilbert’s own
interests overlapped those of Stieltjes, since expansion of functions in
terms of systems of orthogonal functions plays an important role in the
theory of integral equations.

E. B. Van Vleck (1863-1943) wrote his thesis under Klein at Géttingen
in 1893 on the topic “Zur Kettenbruchentwicklung hyperelliptischer und
dhnlicher Intergrale.” Van Vleck continued to work on continued fractions
for some time. Among his contributions are some of the basic convergence
criteria [1901a, b, 1904]. Considerably later, after Van Vleck had become
chairman of the mathematics department at the University of Wisconsin,
H. S. Wall (1902-1971) became his student and wrote a Ph.D. thesis in
1927 “On the Padé approximants associated with the continued fraction
and series of Stieltjes.” Wall in turn interested W. Leighton in the subject.
Between them they became the founders of an American school of con-
tinued fractions including W. T. Scott, W. J. Thron, M. Wetzel, E. Frank,
R. E. Lane, E. P. Merkes, T. L. Hayden, W. B. Jones and A. Magnus
among others.

Hilbert’s students who wrote theses on continued fractions were
O. Blumenthal (1876-1944) in 1898 and J. Grommer in 1914. Two other
students of his, G. Hamel (1877-1954) and E. Hellinger (1883-1950), also
made contributions to continued fractions.

Stieltjes’s theory was extended from 0<r<oo to co<t<oo by
H. Hamburger (1889-1956) in a series of papers [1920, 1921]. Hamburger
had studied both at Gottingen and at Miinchen (where he received his
doctorate) and thus was familiar with the work on continued fractions that
was done at those two centers.

Continued fractions arising in connection with the moment problem
were studied in the 1920s and 1930s by J. Shohat (1886-1944). He came
out of the St. Petersburg school of Tchebycheff and Markoff. Later some
of his Ph.D. students at the University of Pennsylvania also worked in this
area.
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10 Introduction 1.2

It was in the nineteenth century that careful investigations into the
convergence behavior of infinite processes began. The first acceptable
definition of convergence for a continued fraction is due to Seidel [1846].
Stern [1832] had earlier suggested that continued fractions oscillating
between finite bounds should be considered to be convergent. Later [1848]
he adopted Seidel’s formulation. Seidel and Stern then proceeded to
develop convergence and divergence criteria for continued fractions with
real elements.

For continued fractions with complex elements the result of Worpitzky
[1865]

K(a,/1) converges if |a,|< 3, n>1,

appears to have been the first. Worpitzky’s theorem was published in the
annual program of the Friedrichs Gymnasium und Realschule in Berlin,
and thus it is not surprising that it did not attract attention. His theorem
was rediscovered by Pringsheim [1899] and Van Vleck [1901b]. It was only
in 1905 that Worpitzky’s article was brought to Van Vleck’s attention
[1905]. Apparently this article was Worpitzky’s dissertation. It also con-
tains a proof of the convergence of the Gauss continued fractions, which
predates Thomé’s result by two years.

The next important contributions were made by A. Pringsheim (1850
1941) and Van Vleck. In 1898 Pringsheim showed that

K(a,/b,) converges if |b,| > |a,|+1, n>1.

From this one can deduce the Worpitzky criterion as well as
K(1/b,) converges if |b,|>2, n> 1.

A slightly weaker result, namely,
K(1/b,) converges if |b,|>2+e, e>0,n> 1,

had been given already [1889] by S. Pincherle (1853-1936), an extremely
prolific mathematician who made numerous other contributions to con-
tinued fraction theory. Among these is a result which relates the solutions
of three-term recurrence relations to the convergence of a related con-
tinued fraction (see Section 5.3).

Van Vleck [1901a] proved that

K(1/b,) converges if |arg b,| <7 /2 —e, €>0, n> 1, and Z|b,|= co.

Further additions to convergence theory, in particular the limit-periodic
continued fractions, were made by Pringsheim in Miinchen, his student
O. Perron (1880-1973), who also became a professor in Miinchen, and
O. Szasz (1884—1952). Szasz spent a year in Minchen before moving on to
Frankfurt (where he became a colleague of Hellinger). Later he came to
Cincinnati. Perron’s substantial original contributions to the subject are
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