

The theory of generalised functions

The theory of generalised functions

D.S.JONES

Ivory Professor of Mathematics, University of Dundee

CAMBRIDGE UNIVERSITY PRESS

Cambridge London New York New Rochelle Melbourne Sydney

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521237239

First edition © McGraw-Hill 1966 Second edition © Cambridge University Press 1982

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of the copyright holder.

This publication is a substantially revised and completely reset edition of Generalised Functions, published by McGraw-Hill 1966 First published by Cambridge University Press 1982 This digitally printed version 2008

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-23723-9 hardback ISBN 978-0-521-10004-5 paperback

> To Katie, Kim and Corrie for the pleasure they have given Ivy and myself

Contents

	Preface	X
1	Convergence	1
1.1	Preliminary definitions	1
1.2	Sequences	3
1.3	Functions	5
1.4	Topological space	7
1.5	Compactness	9
1.6	Metric spaces	12
1.7	Function spaces	15
1.8	Numbers	19
1.9	Limits	21
1.10	Series	25
1.11	Derivatives	28
1.12	Integration	31
2	Good functions	44
2.1	Good functions	44
2.2	Fourier transforms	46
3	Generalised functions	53
3.1	Generalised functions	53
3.2	Conventional functions as generalised functions	58
3.3	The derivative	63
3.4	The Fourier transform	71
3.5	Limits	75
3.6	Classification of generalised functions	81
4	Powers of x	94
4.1	Change of notation	94
4.2	Powers of x	94
4.3	Even and odd generalised functions	97
4.4	Singular integrals	99
4.5	Fourier transforms	109
4.6	Generalised functions containing a logarithm	115
4.7	Integration	121

viii	Contents	
5	Series	128
5.1	General properties	128
5.2	Hermite polynomials	132
5.3	The expansion of a generalised function in	
	Hermite polynomials	137
5.4	Functions of the class L_2	141
5.5	Fourier series	144
5.6	Periodic generalised functions	149
5.7	Poisson summation formula	155
5.8	An alternative definition of a periodic generalised	
	function	160
6	Multiplication and the convolution product	162
6.1	Multiplication	162
6.2	Division	172
6.3	The convolution	176
6.4	Properties of the convolution	180
6.5	A generalisation of the convolution	183
6.6	The convolution for the class K_+	200
7	Several variables	210
7.1	Good functions	211
7.2	Generalised functions	216
7.3	The derivative	220
7.4	The Fourier transform	224
7.5	The general form of a generalised function	228
7.6	The direct product	235
7.7	Some special generalised functions	242
7.8	Multiplication	257
7.9	Integration with respect to a parameter	263
8	Change of variables and related topics	267
8.1	Rotation of axes	267
8.2	Change of variable: one-dimensional case	273
8.3	Change of variables: several dimensions	287
8.4	Delta functions	292
8.5	Periodic and other changes of variables	300
8.6	Singular integrals	308
8.7	The hyperbolic and ultrahyperbolic distances	310
8.8	Fourier transforms of the hyperbolic and	
	ultrahyperbolic distances	329
8.9	The general quadratic form	337
8.10	The class K_+	340

	Contents	1X
9	Asymptotic behaviour of Fourier integrals	345
9.1	The Riemann-Lebesgue lemma	345
9.2	Generalised functions with a finite number of	
	singularities in one dimension	349
9.3	The method of stationary phase	357
9.4	Generalised functions with isolated singularities	362
9.5	Integrals over a finite domain	364
9.6	Stationary phase in higher dimensions	379
9.7	Inverse polynomials	386
10	Some applications	390
10.1	Integral equations	390
10.2	Hilbert transforms	396
10.3	Ordinary linear differential equations	405
10.4	Linear partial differential equations	410
10.5	Approximate behaviour of elementary solutions	427
10.6	Covariance and generalised functions of positive	
	type	429
11	Weak functions	434
11.1	Weak functions in one dimension	434
11.2	The weak derivative and the weak limit	437
11.3	The classification of weak functions	439
11.4	Sundry results	444
11.5	Multiplication	447
11.6	The convolution	451
11.7	Volterra integral equations	458
11.8	Ordinary linear differential equations	460
11.9	Linear differential equations with constant	
	coefficients	462
	The operational method	467
	Weak functions of several variables	478
	Integration with respect to a parameter	484
11.13	Change of variable: single variable case	485
	Change of variables: several variables	487
	Ultradistributions and Fourier transforms	488
11.16	The relation between weak functions and	
	distributions	495
	Appendix: Titchmarsh's theorem	497
12	The Laplace transform	500
12.1	The Laplace transform	500
12.2	Ordinary differential equations	506

X	Contents	
12.3	Integral equations	509
12.4	Laplace transform of a weak function of several	
	variables	510
12.5	Partial differential equations	513
12.6	The bilateral Laplace transform	516
12.7	Integral equations	519
12.8	The Wiener-Hopf integral equation	520
12.9	A related partial differential equation	524
	Table of Fourier transforms	529
	Table of Laplace transforms	533
	Index	534

Preface

For some years I have been offering lectures on generalised functions to undergraduate and postgraduate students. The undergraduate course was based originally on M.J. Lighthill's stimulating book An Introduction to Fourier Analysis and Generalised Functions which contains a simplified version of a theory evolved by G. Temple to make generalised functions more readily accessible and intelligible to students. It is an approach to the theory of generalised functions which permits early introduction in student courses while retaining the power and practical utility of the methods. At the same time it can be developed so as to include the more advanced aspects appropriate to postgraduate instruction. This book has grown from the courses which I have given expounding the ramifications of the Lighthill–Temple theory to various groups of students. It is arranged so that sections can be chosen relevant to any level of course.

Much of the material was originally contained in my book Generalised Functions, published by McGraw-Hill in 1966, but this book differs from the earlier version in several major respects. The treatment and definitions of the special generalised functions which are powers of the single variable x have been completely changed as well as those of the powers of the radial distance in higher dimensions. A different definition of δ -functions, whose support is on a surface, has also been introduced. The properties of the hyperbolic and ultrahyperbolic distances have been tackled in another way, with consequences for the general quadratic form. Numerous subsequent formulae are thereby altered. Further, a section has been added on the Fourier transform of weak functions and ultradistributions.

The purpose of the first chapter is to summarise some of the basic theorems of analysis which are required in subsequent chapters. It is anticipated that most readers will have met this

xii Preface

material in one form or another before reading this book. For this reason explanation and argument have been cut to a minimum and, consequently, this chapter is not a suitable first reading for those who have not met several of the analytical ideas before. Since the chapter is self-contained some readers will, I hope, find it a useful introduction to the notions and terminology employed in other books where the approach to the subject has a more topological character. Many readers will find it profitable, on a first reading, to start at Chapter 2 and read onwards, referring back to Chapter 1 only for notation and statements of theorems.

In Chapter 2 the properties of good functions are given. Generalised functions of a single variable are introduced in Chapter 3 via sequences of good functions. After an examination of the derivative, Fourier transform and limit, the general structure of a generalised function is determined.

Chapter 4 is concerned with some special generalised functions, their Fourier transforms and the evaluation of certain integrals which are too singular to be embraced by classical analysis. The final section contains a brief discussion of generalised functions on a half-line.

Chapter 5 is devoted to series of generalised functions and shows, in particular, that any generalised function can be represented as a series of Hermite functions. There is also a detailed investigation of expansions in Fourier series, many theorems being much simpler than in classical analysis.

The problem of multiplication and division is dealt with in Chapter 6; the properties of the convolution product are also derived.

Generalised functions of several variables are introduced in Chapter 7. Most of the results are obvious generalisations of those for a single variable but new features are the direct product and the Fourier transform with respect to one of several variables. The last sections deal with spherically symmetric generalised functions and integration with respect to a parameter.

Chapter 8 treats the difficult problem of changing variables in a generalised function. This leads naturally to δ -functions on a hypersurface and the meaning to be attached to powers of the hyperbolic distance and its generalisations.

Preface xiii

The asymptotic evaluation of Fourier integrals and the method of stationary phase in several variables comprise Chapter 9.

Applications of generalised functions are considered in Chapter 10. Particular reference is made to integral equations, ordinary and partial differential equations, as well as correlation theory.

Chapter 11 brings in the notion of a weak function, which is not so restricted at infinity as the generalised function. The significance of weak functions in solving integral equations, ordinary differential equations and in the justification of the operational method is shown. The Fourier transform of a weak function and ultradistributions are discussed, as well as the relation between weak functions and distributions.

The Laplace transform of a weak function is defined in Chapter 12 and a number of applications is given.

Exercises are given at various stages throughout the chapters. Most of them are to enable the reader to become thoroughly familiar with the theory, though some are extensions of theorems in the text. There are also some exercises which are worded so that they could be used as topics for minor theses. It is hoped that this variety will provide instructors with plenty of flexibility.

The author takes this opportunity of expressing his thanks to Mrs D. Ross for turning his manuscript into legible typescript despite a certain obscurity about the way it was organised.

The author's gratitude to his wife Ivy, who manages to display nonchalance and good cheer whatever burden is imposed on her, is immeasurable.

University of Dundee October 1980

D.S. Jones