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1

Convergence

This chapter is concerned primarily with deriving certain theorems
on convergence which will be required in subsequent chapters. It is
expected that most readers will be familiar with the notions involved
so that much of the material is given in a condensed manner. How-
ever, an attempt has been made to make the chapter self-contained.
Some readers may find the chapter a helpful introduction to the
ideas and terminology employed in other books on generalised
functions. The reader who does not have a good background in
analysis is strongly advised to go straight to Chapter 2 and to just
refer to Chapter 1 for the theorems that are needed.

1.1. Preliminary definitions

A set is a collection of elements. A set containing no elements is
called a null or empry set. There is no restriction on what an element
is: it may be a number or a point or a vector and so on. Usually
we shall call the elements points and take all sets to be sets of points
in a fixed non-empty set Q, which will be called a space. The empty
set will be denoted by f and the capitals 4, B, ... will denote sets. If
w is a point of A, we write we A ; if w is not a point of A, we write
wg A. Another useful notation is {w|P} for the set of points satisfying
condition P ; for example, the set of points common to both sets 4
and B can be written {w|weA and weB}.

A set of sets is called a class. The class of all sets in Q is called the
space of sets in Q. A class of sets in Q is a set in this space of sets so
that all set theories apply to classes considered as sets in the corres-
ponding space of sets. Classes will be denoted by the script capitals
A, B, ...

Ifall the points of 4 are points of B we write A < B or, equivalently,
B> A. Obviously, Ac Aand J= A<= Q. If A< Band B C then
A< C.lf A= Band B < 4 we write 4 = B.
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2 Convergence

The intersection A ™ B is the set of all points common to A and B,
ie. if weA and weB then we AN B and conversely. The union
AU B is the set of all points which belong to at least one of the sets
A or B, ie. if weA or weB then weAuUB and conversely. If
AN B = J the sets A and B are said to be disjoint and their union
may then be called a sum and written as A + B, i.e.if An B = & then
AUuB=A+B.

The difference A — B is the set of all points of A which are not in B,
ie. if we A and w¢ B then we A — B and conversely. The difference
Q — A is called the complement of A and denoted by A®; it is the set
of all points which do not belong to A.

The following commutative, associative and distributive laws are
valid, ie.

AUB=BuUA, ANnB=BnA;
(AuB)uC=A4AuU(BuU(),
(ANB)NnC=An(BNC);
(AuB)UC=(ANC)U(BNC),
(AuBIn(AuC)=Au (BN C).

Relations between sets and their complements are:

Q° =, ¢ =Q, ANA* =, A+ A°=Q;
A—B=AnB", (AU B) = AN B°,
(AN B)° = A°U BS;

if A = B then 4° > B°.

The operations of union and intersection can be extended to
arbitrary classes. Let I be a set, not necessarily in £, and correspond-
ing to each i€ I choose a set A; < Q. The class of sets so chosen will be
denoted by {A4,|ieI}. For obvious reasons I is called an index set.
The intersection of {4,i€l} is the set of all points which belong to
every A, and is denoted by (), 4,, i.e.

iel
() 4, = {w|we 4, for every iel}.
il

The union | )

A, le.

A, is the set of all points which belong to at least one

iel

| 4; = {w|we 4, for some i€l}.

iel
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1.2. Sequences 3

IfA,nA;= P foralli, jel, i+ j, the class {4,|ie ]} is said to be a
disjoint class and the union of its sets may be called a sum and deno-
ted by D A,.

If w¢ A, then we 4] and conversely. Consequently

<UA,->c=ﬂAf, (ﬂAi>c=UA§- (1)

iel iel iel iel
By convention
U4,=4d, (A4, =Q. V)
icd icd

It will be observed that the following principle of duality holds: any
relation between sets involving unions and intersections becomes a valid
relation by replacing U, N. &, Q by N, U, Q, J respectively.

Finally we introduce the notion of equivalence class. Suppose we
have a rule R which places the sets 4 and B in one-to-one corre-
spondence, which we denote by ARB. The relation is reflexive,
ARA; symmetric, ARB implies BRA; transitive, ARB and BRC
imply ARC. A reflexive, symmetric and transitive relation is called
an equivalence relation. The class { B|BRA} is called the equivalence
class corresponding to A. In essence an equivalence class is deter-
mined by any one of its members.

A class or set is said to be finite if its elements can be put in one-to-
one correspondence with the first n positive integers, for some n.
It is said to be denumerable if it can be put in one-to-one corres-
pondence with all the positive integers. It is said to be countable
if it is either finite or denumerable.

1.2. Sequences

For each value of n(=1,2,...) take a corresponding set A,. The
ordered denumerable class A, A,,... is called a sequence and is
denoted by {4, }. It is not necessary that 4, # A, . The limit superior

lim, A, is defined by
limd, =) | 4,;
n k=1 n=k

it consists of the set of all those points which belong to infinitely
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4 Convergence

many A, . The limit inferior lim, A, is defined by
l' w0 0
Ta,= U N4

k=1n=k

it consists of the set of all those points which belong to all but a finite
number of 4, . Every point which belongs to all but a finite number
of A, belongs to infinitely many A, so that

limA4, <lim4,.

If lim 4, > Tim 4, then lim 4, = Tim 4, and if this common set be
denoted by A the sequence {A, } is said to converge to A.

A sequence is said to be non-decreasing if A, < A, , for each n;
non-increasing if A, | < A, for each n. A monotone sequence is one
which is either non-decreasing or non-increasing. Every monotone
sequence converges and, if it is non-decreasing, mAn = U,‘:’:l A,
whereas if it is non-increasing, im A, = ()., 4,. This follows at
once from the definitions.

The idea of sequence occurs in other ways; thus the sequence {, }
is the ordered denumerable set of points w,,w,,... A subsequence
is obtained by selecting a sequence {n,} of positive integers with
n;>n;wheni > jand selecting the terms w, of the original sequence;
the result is a sequence {, } whose ith term is the n,th term of the
original sequence.

Many sequences involve real numbers, whose properties we now
briefly review. A set X of real numbers is bounded above by the real
number b if x < b for every xe X ; b 1s called an upper bound for X.
If b is an upper bound for X, if ¢ is any other upper bound and if
b < ¢ whatever ¢ is then b is the smallest possible upper bound; in
that case b is known as the least upper bound or supremum of X and
written sup X. Sometimes the notation 1.u.b. X is used. By reversing
the inequalities in these definitions we define bounded below, lower
bound, greatest lower bound or infimum of X (written inf X).

A fundamental postulate is: every non-empty set of real numbers
which is bounded above possesses a real supremum. If the non-empty
set X of real numbers is bounded below, the set { — x|xe X} is
bounded above and hence possesses a real supremum. Therefore X
has a real infimum, i.e. a non-empty set bounded above and below
possesses both a real supremum and a real infimum.
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1.3. Functions 5

The supremum of a sequence {x, } is denoted by sup, x, . The limit
superior is defined by

limx, = inf sup x,
n k nxk

and the limit inferior by

lim x, = sup inf x,.

e k  nzk
If a sequence is bounded above and below, it possesses both a real
supremum and a real infimum and so has both a limit superior and a
limit inferior.

The ordinary number system consists of finite numbers: the exten-
ded real number system is obtained by adding the infinite numbers oo
and — . These symbols have the properties:

X .
x+(xow)=(+tx)+x=+x0, ——=0 if —o<x<w;
+
+ o fo<x<w
o0 if —o0<x<0.

The expression oo — 0 is meaningless so that if one of the sum of two
numbers be + oo the other must not be F oo for the sum to exist.

Any set of extended real numbers has both a supremum (which
may be infinite) and an infimum. Consequently every sequence of
extended real numbers has a limit superior and a limit inferior. More-
over, if inclusion, union and intersection of numbers be identified
with x <y, sup,, x;, inf,_, x, respectively these operations have the
properties of the corresponding set operations; thus monotone
sequences of extended real numbers (ic. x,, , > x, or x,,  <x, for
all n) always converge (possibly to infinity).

The set of all finite numbers — o0 < x < o is the real line R, or
(— o0, o); the set — 00 <x < oo is the extended real line Rl or
[ — o0, 0].

1.3. Functions
If a rule is provided which associates with each weQ a point
w'eQ we say that a function [ on Q or a function from Q to Q' is
defined. The space Q is called the domain of f. The point @' which
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6 Convergence

corresponds to  is called the value of f at w and is denoted by f(w).
The subset of Q' comprising the values of f'is called the range of f.
We shall suppose that each point of the range corresponds to only
one point of the domain so that the correspondence is one-to-one
and that a function is always single-valued. Multiple-valued functions
which occur frequently in analysis can be subsumed under the
preceding definition by giving a rule specifying the branch to be
employed.

Note that a sequence can be regarded as a function whose domain
is the set of positive integers. However we shall continue to use the
notation f, for the value at the nth integer rather than f (n).

Sometimes it is convenient to use the notation f(A4) for the set of
values of f for all we A; f(A) is called the image of A.Similarly f(</)
is the class of images f(A) for Ae.o/. The inverse image of A" = &
is the set of all points such that f(w)e A'. The inverse function f ~' of
fis defined by assigning to every A’ its inverse image, i.e.

JHA) = {o|f(w)ed].

If A’ consists of the single point o’ we write f ~ (') for {w| f(w) = '}.
The inverse is defined from the class of all subsets of Q' to the class
of all subsets of Q. If A’ does not contain a point of the range of f
then f~'(4') = . Since f is single-valued the inverse images of
disjoint sets of " are themselves disjoint. Hence

fTHA = B)=f "A) = (B,
f“( A’,->=Uf”‘(A§),
iel iel

e
A (ﬂ A;) =)/ "'(4)
iel iel
so that inverse functions preserve inclusion and all set and class
operations.

Another notation for functions arises in connection with product
spaces. If A, and A, are two arbitrary sets the product set A x A, is
defined as the set of all ordered pairs (@, , w,) wherew, €4, w,€A4,.
If A,,B,, ... are sets in , and 4,,B,, ... sets in Q, then 4, x A,,
B, x B,, ... are sets in the product space 2, x Q,. If we are given a
rule which associates '€ Q' with w,€Q, and w,€€, then we can
regard it as a function from Q, x 2, to € and include it in the above
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1.4. Topological space 7

notation. Sometimes, however, it is convenient to indicate the
connection with Q, and Q, separately and write f(w,, ®,) for its
value at (w,,w,). Another interpretation is that, for each fixed
w,€Q,, fdetermines a function from Q, to ', i.e. f may be thought
of as a function from €2, to the set of all functions from Q, to '; in
this case its value at w, is denoted by f( ,w,). Similarly for fixed
w,, the function from Q, to €' is written f(w,, ).

1.4. Topological space

A space is provided with a topology when the class of open sets is
defined. What is to be meant by an open set is at our disposal subject
only to the restriction that arbitrary unions and finite intersections
of open sets must also be open sets. Because of the convention (2) the
class of open sets contains  and ©. The complement of an open set
is called a closed set. By (1) arbitrary intersections and finite unions
of closed sets are closed sets and the class contains £ and 7.

Two different topologies on the real line are obtained by regarding
a single point as an open set or as a closed set respectively.

A space in which a topology has been supplied is called a topo-
logical space and will be denoted by Z, points of it by x and the class
of open sets by ¢0. If A is a setin & it can be regarded as a space in its
own right and supplied with its own topology or it can be provided
with the topology of the intersections of A4 with the open sets of  ;in
the latter case the induced topology is said to be chosen.

Any set which contains a non-empty open set is a neighbourhood
of any point x of this open set. A neighbourhood of x will be denoted
by N(x). The punctured or deleted neighbourhood N(x) consists of a
neighbourhood with x removed. Sometimes neighbourhoods and
open sets are identified and a topology provided by specifying
neighbourhoods in a space.

The interior A° of A is the union of all open sets in 4; if A is open
then A = 4°. The point x belongs to A° i.¢. is interior to A if Aisa
neighbourhood N(x) of x. The adherence 4 of A is the intersection of
all closed sets containing A; if 4 is closed then 4 = A. The point x
belongs to 4, ie. is adherent to A, if no N(x) is disjoint from A.
Clearly

(A =A%, (A =(4r.
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8 Convergence

A function ffrom a topological domain % to a topological range
space 4" is said to be continuous at x if the inverse images of neigh-
bourhoods of f(x) are neighbourhoods of x. If fis continuous at every
x€ 4 then fis said to be continuous on Z. Since inverse functions
preserve all set operations f'is continuous if, and only if, the inverse
images of open sets are open. By taking complements we could
replace the word ‘open’ by ‘closed’. The spaces Z and 2" are topo-
logically equivalent if, and only if, there exists a one-to-one corres-
pondence fon 4 to 2" such that fand f ' are continuous.

Before introducing the notion of limit we consider the ordering of
sets. Let I be a set of points denoted variously by i,j, k. A partial
ordering < (i < j means i precedes j, j > i means j follows i) is a rela-
tion which is reflexive, i<i; transitive, i<j and j<k imply
i< k; and such that i < j and j < i imply i = j. A typical example is
the inclusion relation of sets. I is said to be a direction if it is partially
ordered and if every pair i, j is followed by some k. An example is the
neighbourhoods of a point x. I is said to be linearly ordered if every
pair i, jis ordered so that either i < jorj < i; I is then also a direction.
The set of integers is linearly ordered by the relation <.

The indexed set {x,|i€I} or {x,} for short is called a directed set if
I is a direction; a sequence is a particular example. If for every N(x)
there is a j such that x,e N(x) for all i >> j, we say that the directed set
{x,} is convergent and write x, — x, calling x the limit of the directed
set. Although we say x is the limit there is nothing to prevent a
directed set having more than one limit. Topological spaces in which
directed sets have no more than one limit are called Hausdorff or
separated spaces.

Definition 1.1. A topological space is called a Hausdorff or
separated space if every directed set has at most one limit.
A separated space has the following important property.

Theorem 1.1. The two definitions

(i) every pair of distinct points has disjoint neighbourhoods,

(i) the intersection of all closed sets containing a point is the point,
are equivalent and, moreover, are equivalent to Definition 1.1.

Proof. Suppose x; = x and x, - y where x # y. Then there are j and
k such that x,e N(x) for all i > and x,e N(y) for all i>>k. Hence
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1.5. Compactness 9

x,€ N(x)n N(y) for all those i which follow both j and k. Such i exist
because I is a direction. Hence no pair of N(x) and N(y) is disjoint so
that (i) is not true if a directed set has more than one limit. On the
other hand, if no pair N(x), N(y) is disjoint there are points
z€ N(x)n N(y) and we can make the pairs form a direction by saying
that N(x) > N, (x) and N(y) > N, (y) implies (N(x), N(y))< (N (x),
N, (y). The points z then form a directed set converging to both
x and y. Thus if distinct points do not have disjoint neighbourhoods
a directed set can have more than one limit and the proof that
(1) and Definition 1.1 are equivalent is complete.

Turning now to (ii) we note that, if (i) holds, for every y # x there
exists a N(x) such that y¢ N(x) and therefore (ii) holds. Conversely,
if (i) holds there exists, for every y # x, a N(x) such that y¢ N(x).
Then ye(N(x))® and this is an open set which is a neighbourhood of y
disjoint from N(x), i.e. (ii) implies (i) and the proof of the theorem is
complete. [J

Closely related to the concept of limit is that of point of accumula-
tion. A point x is a point of accumulation or a limit point of the directed
set {x,} if for every N(x) and i there exists some j>>i such that
x;€ N(x). The connection between limit and point of accumulation
can be expressed in terms of the sets 4, = {x; li>i}. For x, - x if,
and only if, for every N(x) there exists an A, = N(x), whereas x is a
point of accumulation if, and only if, no pair 4,, N(x) is disjoint.
Obviously the set of all points of accumulation of {x, } consists of the
intersection of all A;, and if x, > x this set comprises the single
point x.

1.5. Compactness

If a directed set possesses at least one point of accumulation it is
said to have the Bolzano—Weierstrass property. Spaces in which all
directed sets have the Bolzano—Weierstrass property are called
compact.

Definition 1.2. A separated space is compact if every directed set
has at least one point of accumulation.
A set is compact if it is compact in its induced topology. A class
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% of open sets is called an open covering of a set A if, for every x€ 4,
there is some C = € such that xe C.

Theorem 1.2. A separated space is compact if, and only if, every
open covering of the space contains a finite subclass which is also a
covering of the space.

For this reason a compact space is often said to have the Heine—
Borel property.

Proof. If every open covering contains a finite covering we see, by
taking complements, that every class of closed sets whose intersec-
tion is empty contains a finite subclass whose intersection is empty.
Hence every class of closed sets, all of whose finite subclasses have
non-empty intersections, has a non-empty intersection.

If {x,} is a directed set let 4, = {x,|j>i}. The 4, form a class of
closed sets whose finite subclasses have non-empty intersections
and hence the intersection of all 4, is non-empty, ie. {x;} has a
point of accumulation.

Conversely, consider a class of closed sets all of whose finite
subclasses have non-empty intersections. From this class together
with the non-empty intersections we can form a direction by the
relation of inclusion and then, by selecting a point from every set,
we obtain a directed set {x, }. If the space is compact {x, } has a point
of accumulation which must belong to every set of the class. Hence
the intersection of the class is non-empty and reversing the argument
of the first paragraph shows that every open covering contains a
finite covering. The proof of the theorem is complete. []

Theorem 1.3. Every compact set is closed; in a compact space every
closed set is compact.

Proof. Let A be compact and let xe 4, ye A°. Let N(x) be a neigh-
bourhood of x and N(x, y) a neighbourhood of y disjoint from N(x).
As x goes through every point of 4 the N(x) form an open covering
of A which by Theorem 1.2 contains a finite covering U;= (N(x,)
Then ye( i, N(x,, y) which is disjoint from the finite covering so
that y¢A. Since y was chosen arbitrarily in A4° it follows that A
and A° are disjoint, i.e. A is closed.
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