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The role of gravity 

The view of physics that is most generally accepted at the moment is 
that one can divide the discussion of the universe into two parts. First, 
there is the question of the local laws satisfied by the various physical 
fields. These are usually expressed in the form of differential equations. 
Secondly, there is the problem of the boundary conditions for these 
equations, and the global nature of their solutions. This involves 
thinking about the edge of space-time in some sense. These two parts 
may not be independent. Indeed it has been held that the local laws 
are determined by the large scale structure of the universe. This view 
is generally connected with the name of Mach, and has more recently 
been developed by Dirac (1938), Sciama (1953), Dicke (1964), Hoyle 
and Narlikar (1964), and others. We shall adopt a less ambitious 
approach: we shall take the local physical laws that have been experi­
mentally determined, and shall see what these laws imply about the 
large scale structure of the universe. 

There is of course a large extrapolation in the assumption that the 
physical laws one determines in the laboratory should apply at other 
points of space-time where conditions may be very different. If they 
failed to hold we should take the view that there was some other 
physical field which entered into the local physical laws but whose 
existence had not yet been detected in our experiments, because it 
varies very little over a region such as the solar system. In fact most of 
our results will be independent of the detailed nature of the physical 
laws, but will merely involve certain general properties such as the 
description of space-time by a pseudo-Riemannian geometry and the 
positive definiteness oh~ugy density. 

The fundamental interactions at present known to physics can be 
divided into four classes: the strong and weak nuclear interactions, 
electromagnetism, and gravity. Of these, gravity is by far the weakest 
(the ratio Gm2je2 of the gravitational to electric force between two 
electrons is about 10-4°). Nevertheless it plays the dominant role in 
shaping the large scale structure of the universe. This is because the 
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2 THE ROLE OF GRAVITY 

strong and weak interactions have a very short range ('" 10-13 cm or 
less), and although electromagnetism is a long range interaction, the 
repulsion of like charges is very nearly balanced, for bodies of macro­
scopic dimensions, by the attraction of opposite charges. Gravity on 
the other hand appears to be always attractive. Thus the gravitational 
fields of all the particles in a body add up to produce a field which, for 
sufficiently large bodies, dominates over all other forces. 

Not only is gravity the dominant force on a large scale, but it is a 
force which affects every particle in the same way. This universality 
was first recognized by Galileo, who found that any two bodies fell 
with the same velocity. This has been verified to very high precision 
in more recent experiments by Eotvos, and by Dicke and his collabo­
rators (Dicke (1964)). It has also been observed that light is deflected 
by gravitational fields. Since it is thought that no signals can travel 
faster than light, this means that gravity determines the causal 
structure of the universe, i.e. it determines which events of space-time 
can be causally related to each other. 

These properties of gravity lead to severe problems, for if a suffi­
ciently large amount of matter were concentrated in some region, it 
could deflect light going out from the region so much that it was in fact 
dragged back inwards. This was recognized in 1798 by Laplace, who 
pointed out that a body of about the same density as the sun but 
250 times its radius would exert such a strong gravitational field that 
no light could escape from its surface. That this should have been 
predicted so early is so striking that we give a translation of Laplace's 
essay in an appendix. 

One can express the dragging back of light by a massive body more 
precisely using Penrose's idea of a closed trapped surface. Consider 
a sphere ff surrounding the body. At some instant let .r emit a flash 
of light. At some later time t, the ingoing and outgoing wave fronts 
from ff will form spheres ~ and ~ respectively. In a normal situa­
tion, the area of ~ will be less than that offf (because it represents 
ingoing light) and the area of ~ will be greater than that of ff 
(because it represents outgoing light; see figure 1). However if a suffi­
ciently large amount of matter is enclosed within !T, the areas of ~ 
and ~ will both be less than that offf. The surfaceff is then said to 
be a closed trapped surface. As t increases, the area of ~ will get 
smaller and smaller provided that gravity remains attractive, i.e. pro­
vided that the energy density of the matter does not become negative. 
Since the matter inside ff cannot travel faster than light, it will be 
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THE ROLE OF GRAVITY 3 

trapped within a region whose boundary decreases to zero within a 
finite time. This suggests that something goes badly wrong. We shall 
in fact show that in such a situation a space-time singularity must 
occur, if certain reasonable conditions hold. 

One can think of a singularity as a place where our present laws of 
physics break down. Alternatively, one can think of it as representing 
part of the edge of space-time, but a part which is at a finite distance 
instead of at infinity. On this view, singularities are not so bad, but one 
still has the problem of the boundary conditions. In other words, one 
does not know what will come out of the singularity. 

FIGURE 1. At some instant, the sphere Y emits a. flash of light. At a. later time, 
the light from a. point p forms a sphere [/ sroWld p, and the envelopes Y 1 and 
Y. form the ingoing and outgoing wavefronts respectively. If the areas of both 
.r1 and Y 2 are less than the area of Y, then Y is a closed trapped surface. 

There are two situations in which we expect there to be a sufficient 
concentration of matter to cause a closed trapped surface. The first is 
in the gravitational collapse of stars of more than twice the mass of 
the sun, which is predicted to occur when they have exhausted their 
nuclear fuel. In this situation, we expect the star to collapse to a singu­
larity which is not visible to outside observers. The second situation is 
that of the whole universe itself. Recent observations of the microwave 
background indicate that the universe contains enough matter to 
cause a time-reversed closed trapped surface. This implies the exist­
ence of a singularity in the past, at the beginning of the present epoch 
of expansion of the universe. This singularity is in principle visible to 
us. It might be interpreted as the beginning of the universt... 
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4 THE ROLE OF ORA VITY 

In this book we shall study the large scale structure of space-time 
on the basis of Einstein's General Theory of Relativity. The predic­
tions of this theory are in agreement with all the experiments so far 
performed. However our treatment will be sufficiently general to cover 
modifications of Einstein's theory such as the Brans-Dicke theory. 

While we expect that most of our readers will have some acquain­
tance with General Relativity, we have endeavoured to write this 
book so that it is self-contained apart from requiring a knowledge of 
simple calculus, algebra and point set topology. We have therefore 
devoted chapter 2 to differential geometry. Our treatment is reason­
ably modern in that we have formulated our definitions in a manifestly 
coordinate independent manner. However for computational con­
venience we do use indices at times, and we have for the most part 
avoided the use of fibre bundles. The reader with some knowledge of 
differential geometry may wish to skip this chapter. 

In chapter 3 a formulation of the General Theory of Relativity is 
given in terms of three postulates about a mathematical model for 
space-time. This model is a manifold Jt with a metric ~ of Lorentz 
signature. The physical significance of the metric is given by the first 
two postulates: those of local causality and of local conservation of 
energy-momentum. These postulates are .common to both the General 
and the Special Theories of Relativity, and so are supported by the 
experimental evidence for the latter theory. The third postulate, the 
field equations for the metric ~, is less well experimentally established. 
However most of our results will depend only on the property of the 
field equations that gravity is attractive for positive matter densities. 
This property is common to General Relativity and some modifications 
such as the Brans-Dicke theory. 

In chapter 4, we discuss the significance of curvature by considering 
its effects on families of timelike and null geodesics. These represent 
the paths of small particles and of light rays respectively. The curva­
ture can be interpreted as a differential or tidal force which induces 
relative accelerations between neighbouring geodesics. If the energy­
momentum tensor satisfies certain positive definite conditions, this 
differential force always has a net converging effect on non-rotating 
families of geodesics. One can show by use of Raychaudhuri's equation 
(4.26) that this then leads to focal or conjugate points where neigh­
bouring geodesics intersect. 

To see the significance of these focal points, consider a one-dimen­
sional surface Y in two-dimensional Euclidean space (figure 2). Let p 
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THE ROLE OF GRAVITY 5 

be a point not on 9'. Then there will be some curve from 9' to p which 
is shorter than, or as short as, any other curve from 9' to p. Clearly 
this curve will be a geodesic, i.e. a straight line, and will intersect 9' 
orthogonally. In the situation shown in figure 2, there are in fact three 
geodesics orthogonal to 9' which pass through p. The geodesic through 
the point r is clearly not the shortest curve from 9' to p. One way of 
recognizing this (Milnor (1963)) is to notice that the neighbouring 

u 
r 

FIGURE 2. The line pr cannot be the shortest line fromp to.9', because there is 
a focal point q between p and r. In fact either px or py will be the shortest line 
from p to .9'. 

geodesics orthogonal to 9' through u and v intersect the geodesic 
through r at a focal point q between9' and p. Then joining the segment 
uq to the segment qp, one could obtain a curve from 9' to p which had 
the same length as a straight line rp. However as uqp is not a straight 
line, one could round off the corner at q to obtain a curve from 9' to p 
which was shorter than rp. This shows that rp is not the shortest curve 
from 9' to p. In fact the shortest curve will be either xp or yp. 

One can carry these ideas over to the four-dimensional space-time 
manifold vii with the Lorentz metric g. Instead of straight lines, one 
considers geodesics, and instead of considering the shortest curve one 
considers the longest timelike curve between a point p and a spaeelike 
surface 9' (because of the Lorentz signature of the metric, there will 
be no shortest timelike curve but there may be a longest such curve). 
This longest curve must be a geodesic which intersects9' orthogonally, 
and there can be no focal point of geodesics orthogonal to 9' between 
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6 THE ROLE OF GRAVITY 

Y and p. Similar results can be proved for null geodesics. These results 
are used in chapter 8 to establish the existence of singularities under 
certain conditions. 

In chapter 5 we describe a number of exact solutions of Einstein's 
equations. These solutions are not realistic in that they all possess 
exact symmetries. However they provide useful examples for the suc­
ceeding chapters and illustrate various possible behaviours. In 
particular, the highly symmetrical cosmological models nearly all 
possess space-time singularities. For a long time it was thought that 
these singularities might be simply a result of the high degree of 
symmetry, and would not be present in more realistic models. It will 
be one of our main objects to show that this is not the case. 

In chapter 6 we study the causal structure of space-time. In Special 
Relativity, the events that a given event can be causally affected by, 
or can causally affect, are the interiors of the past and future light 
cones respectively (see figure 3). However in General Relativity the 
metric ~ which determines the light cones will in general vary from 
point to point, and the topology of the space-time manifold Jt need 
not be that of Euclidean space R4. This allows many more possibilities. 
For instance one can identify corresponding points on the surfaces 
Y 1 and Y 2 in figure 3, to produce a space-time with topology R3 x 8 1 • 

This would contain closed timelike curves. The existence of such a 
curve would lead to causality breakdowns in that one could travel into 
one's past. We shall mostly consider only space-times which do not 
permit such causality violations. In such a space-time, given any 
spacelike surface Y, there is a maximal region of space-time (called 
the Cauchy development of Y) which can be predicted from knowledge 
of data onY. A Cauchy development has a property ('Global hyper­
bolicity ') which implies that if two points in it can be joined by a time­
like curve, then there exists a longest such curve between the points. 
This curve will be a geodesic. 

The causal structure of space-time can be used to define a boundary 
or edge to space-time. This boundary represents both infinity and the 
part of the edge of space-time which is at a finite distance, i.e. the 
singular points. 

In chapter 7 we discuss the Cauchy problem for Gerleral Relativity. 
We show that initial data on a spacelike surface determines a unique 
solution on the Cauchy development of the surface, and that in a 
certain sense this solution depends continuously on the initial data. 
This chapter is included for completeness and because it uses a number 

http://www.cambridge.org/9780521099066
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-09906-6 - The Large Scale Structure of Space-Time 
S. W. Hawking, F.R.S. and G. F. R. Ellis 
Excerpt
More information

THE ROLE OF GRAVITY 7 

Time 
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FIGURE 3. In Special Relativity, the light cone of an event p is the set of all 
light rays through p. The past of p is the interior of the past light cone, and the 
future of p is the interior of the future light cone. 

of results of the previous chapter. However it is not necessary to read 
it in order to understand the following chapters. 

In chapter 8 we discuss the definition of space-time singularities. 
This presents certain difficulties because one cannot regard the singular 
points as being part of the space-time manifold vIt. 

We then prove four theorems which establish the occurrence of 
space-time singularities under certain conditions. These conditions 
fall into three categories. First, there is the requirement that gravity 
shall be attractive. This. can be expressed as an inequality on the 
energy-momentum tensor. Secondly, there is the requirement that 
there is enough matter present in some region to prevent anything 
escaping from that region. This will occur if there is a closed trapped 
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8 THE ROLE OF GRAVITY 

surface, or if the whole universe is itself spatially closed. The third 
requirement is that there should be no causality violations. However 
this requirement is not necessary in one of the theorems. The basic 
idea of the proofs is to use the results of chapter 6 to prove there must 
be longest timelike curves between certain pairs of points. One then 
shows that if there were no singularities, there would be focal points 
which would imply that there were no longest curves between the pairs 
of points. 

We next describe a procedure suggested by Schmidt for constructing 
a boundary to space-time which represents the singular points of 
space-time. This boundary may be different from that part of the 
causal boundary (defined in chapter 6) which represents singularities. 

In chapter 9, we show that the second condition of theorem 2 of 
chapter 8 should be satisfied near stars of more than lt times the solar 
mass in the final stages of their evolution. The singularities which occur 
are probably hidden behind an event horizon, and so are not visible 
from outside. To an external observer, there appears to be a 'black 
hole' where the star once was. We discuss the properties of such black 
holes, and show that they probably settle down finally to one of the 
Kerr family of solutions. Assuming this to be the case, one can place 
certain upper bounds on the amount of energy which can be extracted 
from black holes. In chapter 10 we show that the second conditions of 
theorems 2 and 3 of chapter 8 should be satisfied, in a time-reversed 
sense, in the whole universe. In this case, the singularities are in our 
past and constitute a beginning for all or part of the observed universe. 

The essential part of the introductory material is that in § 3.1, § 3.2 
and § 3.4. A reader wishing to understand the theorems predicting the 
existence of singularities in the universe need read further only chap­
ter 4, § 6.2-§ 6.7, and § 8.1 and § 8.2. The application of these theorems 
to collapsing stars follows in § 9.1 (which uses the results of appen­
dix B); the application to the universe as a whole is given in § 10.1, and 
relies on an understanding of the Robertson-Walker universe models 
(§ 5.3). Our discussion of the nature of the singularities is contained 
in § 8.1, § 8.3-§ 8.5, and § 10.2; the example of Taub-NUT space (§ 5.8) 
plays an important part in this discussion, and the Bianchi I universe 
model (§ 5.4) is also of some interest. 

A reader wishing to follow our discussion of black holes need read 
only chapter 4, § 6.2-§ 6.6, § 6.9, and § 9.1, § 9.2 and § 9.3. This discus­
sion relies on an understanding of the Schwarzschild solution (§ 5.5) 
and of the Kerr solution (§5.6). 
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THE ROLE OF GRAVITY 9 

Finally a reader whose main interest is in the time evolution 
properties of Einstein's equations need read only § 6.2-§ 6.6 and 
chapter 7. He will find interesting examples given in § 5.1, § 5.2 and 
§5.5. 

We have endeavoured to make the index a useful guide to all the 
definitions introduced, and the relations between them. 
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Differential geometry 

The space-time structure discussed in the next chapter, and assumed 
through the rest of this book, is that of a manifold with a Lorentz 
metric and associated affine connection. 

In this chapter, we introduce in § 2.1 the concept of a manifold and 
in § 2.2 vectors and tensors, which are the natural geometric objects 
defined on the manifold. A discussion of maps of manifolds in § 2.3 
leads to the definitions of the induced maps of tensors, and of sub­
manifolds. The derivative of the induced maps defined by a vector 
field gives the Lie derivative defined in § 2.4; another differential 
operation which depends only on the manifold structure is exterior 
differentiation, also defined in that section. This operation occurs in 
the generalized form of Stokes' theorem. 

An extra structure, the connection, is introduced in § 2.5; this 
defines the covariant derivative and the curvature tensor. The connec­
tion is related to the metric on the manifold in § 2.6; the curvature 
tensor is decomposed into the Weyl tensor and Ricci tensor, which are 
related to each other by the Bianchi identities. 

In the rest of the chapter, a number of other topics in differential 
geometry are discussed. The induced metric and connection on a 
hypersurface are discussed in § 2.7, and the Gauss-Codacci relations 
are derived. The volume element defined by the metric is introduced 
in § 2.8, and used to prove Gauss' theorem. Finally, we give a brief 
discussion in § 2.9 of fibre bundles, with particular emphasis on the 
tangent bundle and the bundles of linear and orthonormal frames. 
These enable many of the concepts introduced earlier to be reformu­
lated in an elegant geometrical way. §2.7 and §2.9 are used only at 
one or two points later, and are not essential to the main body of the 
book. 
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