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PARTIAL DIFFERENTIAL EQUATIONS
OF THE FIRST ORDER

1.1 Lagrange’s equation
Lagrange’s partial differential equation of the first order is of the form

Pp+Qq =R, (1)

where p = dufox, ¢ = dufdy and P, @, R are functions of z, y and u;
it is sometimes called a quasi-linear equation since it is linear in the
derivatives. If P, @ and R do not involve u, Lagrange’s equation is
said to be linear; if only R involves u it is said to be semi-linear.

By a solution of (1), is meant a function u(z, ) which satisfies the
differential equation; but we often have to be content with a solution
defined implicitly by a relation f(z,y,u) = 0. If we regard (z,y,u)
as rectangular Cartesian coordinates, f(z,y, ) = 0 is the equation of
a surface; if f = 0 provides a solution of (1), the surface is called an
integral surface. The fundamental problem is: given a regular arct
I in space, is there a unique integral surface through I'? Alternatively,
given a regular arc y in the xy-plane, is there a solution u(x,y) of (1)
which takes given values on y?

Let the parametric equations of I' be

x=2o(t), ¥ =yolt), u=ul).

On any surface, du = pdx + qdy. Hence, if there is an integral surface
through T, the values p,(t), go(t) of p and ¢ on the integral surface at
the point of parameter ¢ of I" satisfy

Uy = Po%o+ oY (2)

where dots denote differentiation with respect to £. If we denote by
Py, @y, R, the values of P, @, R at the point of I of parameter ¢, we have

Fypo+Qoqo = By, (3)

Hence if #,Q,— 9, L, is not zero, p, and g, are determined.
It is conventional to denote the second derivatives u,,, u,,, u,, by
r,8,t; the fact that we have also used ¢ to denote the parameter of I'

1 The term regular arc is defined in Note 3 of the Appendix.
[1]
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2} EQUATIONS OF THE FIRST ORDER 1.1

will not cause any confusion. If we differentiate (1) with respect to z,

we get P7-+Qs = F(x, Y, u,p, Q)’

so that, at the point of I" of parameter ¢,
Foro+ Qo8 = .
Since dp = rdx + sdy, %070+ UoSs = Do-
If 4,Q, — 9o Py is not zero, p, and g, are determined on I', and hence

so also are ry and s,. Similarly we can find all the partial derivatives
of  on I'. Thus we get a formal solution as a Taylor series

U = g+ {Po(® — o) + 2o(¥ — Yo)}
+ 3{ro(x — 20)2 + 285(x — 20) (¥ — Yo) +to(y — ¥o)} + -- -

Under suitable conditions, it can be shown that the series converges in
a neighbourhood of (2, ¥,, 4,) of I', provided that ,@,— v, L, is not
zZero.

Now drop the suffix zero which has served its purpose. At a point
of I', an integral surface satisfies

Pp+Qq=R, pi+qy=-r.
Hence (@Z— Py)q = Ri— Pu,

and similarly for p. If @£— Py vanishes at every point of I', this
equation is impossible unless the transport equation

Py = Rz
(or equivalently) Qu = Ry

is satisfied. Hence, if QZ— Py = 0 on I', there is no integral surface
through I'" unless u satisfies the transport equation; and then there are
an infinite number of integral surfaces since ¢ can be chosen arbitrarily.
An arc I which has this property is called a characteristic. There is
one characteristic through each point of space at which P,Q, R are
not all zero; a characteristic satisfies
£_y

_u
P Q K
A characteristic is the curve of intersection of two integral surfaces.
For if u = u,(z,y), 4 = uy{®, y) are two intersecting integral surfaces,
pde+qdy—du = 0,
Dol +qydy —du = 0,
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1.1} EQUATIONS OF THE FIRST ORDER [3

in an obvious notation, and so

dx dy du
G~z Pa—P1 Dadi—Pids
But Pp,+Qq, =R, Pp,+Qg, =R
P Q R

so that

G~ Pe—P1 Peli—P10e
Therefore on the curve of intersection of two integral surfaces,

do_dy _du

P Q R

The differential equations for a characteristic can be written as
&=P, y=Q, u=R

by a change of parameter. The solution of these equations contains
three constants of integration; two of these can be the coordinates
of the point where the characteristic cuts, say, the plane u = 0,
and the third can be fixed by measuring ¢ from that point — the
differential equations are unaltered if we replace ¢ by ¢+c. The
characteristics then form a two-parameter family. If C is a non-
characteristic are, it can be shown that the unique integral surface
through C is generated by the one-parameter family of characteristics
which intersect C. Again, if the two-parameter family of characteristics
18 given by ¢(x’ y,u)=a, lﬁ(x’ Y, u) = b,

we can construct a one-parameter family by setting up a relation
between @ and b, say b = F(a). This one-parameter family generates
the integral surface

W(x’ y,u) = F{¢(x: Y, u)}

The projection vy of a characteristic I on the plane u = 0 is called a
characteristic base-curve. If P and @ do not involve u, the characteristic
base-curves satisfy i=P, §=0.

In order that there may be a solution which takes given values on vy,
the data must satisfy the equation

Pu = Ra.
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4] EQUATIONS OF THE FIRST ORDER [1.2

1.2 Two examples

We know that, if u is a homogeneous function of 2 and y of degree n
then o

x—+ o _ nu
oY oy
We now prove the converse. The subsidiary equations of Lagrange are
dv _dy _du
x oy

From these equations we get

Hence the general solution is
X (¥
zr Y \a)
As a second example, let us find the integral surface of

y—uw)p+(u—x)qg=2—y,

which goes through the curve = 0,zy = 1.
The characteristics are given by

T=y—u, y=u—x uU=x-—y,
which give Z+y+u=0, xX+yyt+uw=0.
Hence the characteristics are circles,

r+y+u=a, 22+y +u?=0>.

We have to choose the one-parameter family which goes through
u=0,0y =1 Whenwu = 0,zy = 1,

a? = (x+y)?:=a+y*+ 20y = b+ 2.
The required integral surface is therefore
(+y+u)l=22+y2+u?+2

1—zy

or U= .
r+y
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1.3] EQUATIONS OF THE FIRST ORDER [5

1.3 The general first order equation

We now ask the same question concerning the general first order

equation
9 F(x,y,u,p,q) = 0. (1)

Does there exist an integral surface through a given regular arc I
T =m(t), ¥ =1yolt), u=rupt)?

The method is to try to construct a Taylor series which satisfies (1)
and converges in a neighbourhood of an arbitrary point of I'. This
involves calculating at that point all the partial derivatives of u.

The first derivatives of u satisfy the condition du = pdx+qdy, so
their values p, and g, at the point of I' of parameter ¢ are given by

F (2o, Yo, o, Po> %0) = 0
FoPo+Yodo = Uo-

We suppose that we can find a real pair (p,, ¢,) which satisfies these
equations; if we cannot, there is no real integral surface.

Next denote the partial derivatives of F' with respect to z,y,u, p, q
by X, Y, U, P,Q. Then, if we differentiate (1) partially with respect
to z, the variables u, p, ¢ now being functions of x and y, we get

Priy@s+X+Up=0.
By hypothesis, p is now known on I'. Using the condition
dp = rdx+sdy,
the values of the second derivatives of 7 and s on I' satisfy
Pyrg+Qyso+ X+ Uypy = 0,

EoTo+YoSo = Po-

Hence (QoZo—Foo) 8o = — (Xo+ Uy po) %o — Fo Pos (2)
and similarly Qoo — Pago) so = (Yo + Uyo) o+ Qoo (3)
Since Xde+ Ydy+Udu+Pdp+@Qdg =0,

where du = pdx+qdy,

(2) and (3) are in fact the same equation.

If Q,%,— Py, is not zero, the values 7, s,, t, of the second deriva-
tives are determined on I', and similarly for the derivatives of higher
orders. Thus we again get a formal solution as a double Taylor
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6] EQUATIONS OF THE FIRST ORDER [1.3
series which can, under suitable conditions, be shown to converge in
some neighbourhood of the chosen point of I, provided that
Qox.o - o?]o
does not vanish there.
Now drop the suffix zero. At a point of I', an integral surface satisfies

F(CL', y,u,p, 9) = 0:

% = pE+gy,
and Pr+@Qs= —-X—-pU,
Ps+Qt=—-Y—qU,
where ré+sy =9, st+iy=4q.
Hence (Qz—Py)s = — (X +pU)z— Pp,
and (Qé—Py)s = (¥ +qU)j+ Q4.

If Qz — Py vanishes at every point of I', there is no integral surface
through I unless the expressions on the right of the last two equations
vanish. This means that there is no integral surface unless u, p, ¢ are
appropriately chosen on I'. Thus we have now not an arc but a strip;
a sort of narrow ribbon formed by the arc I" and the associated
surface elements specified by p and ¢. Such a ribbon is called a charac-
teristic strip. The arc carrying the strip may be called a characteristic.

The differential equations of a characteristic strip are

§_g_ 4 __ b ___

P Q pP+qQ X+pU  Y+4qU

and also F(e,y,u,p,q) =0,

regarded, not as a differential equation, but as an equation in five
variables. By a change in the parameter ¢, we can write the equations as

where F(x,y,u,p,q) = 0.

The characteristic strips form a three-parameter family. There are five
constants of integration; one of these is fixed by the identity F = 0,
the second by choice of the origin of ¢.

The unique integral surface which passes through a non-character-
istic arc C is generated by a one-parameter family of characteristic
strips. The first step is to construct an initial integral strip by asso-
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1.3] EQUATIONS OF THE FIRST ORDER [7

ciating with each point of C' a surface element whose normal is in the
direction p:q: — 1. If the parametric equations of C are

@ =xg(s), Y =yols), w=1us),

where s need not be the arc-length, we choose

P =Do(8), g =qo($)

du, dzx, Y,

so that A =po 2+ !

and F(xo» Yo> Uo> Po> QO) = 0.

Through each surface element of the initial strip, there passes a unique
characteristic strip. The one-parameter family of characteristic strips
so formed generates the required integral surface, as illustrated by
the example of the next section. This method is usually called the
method of Lagrange and Charpit.

It will be noticed that although the quasi-linear equation

Pp+Qq=R

does possess characteristic strips no use is made of them in solving
such an equation. This is because of an important geometrical differ-
ence between Lagrange’s equation and the general equation

F(x,y,u,p,q9) = 0.

If (24,9, %o) is & point on an integral surface of ¥ = 0, the direction
ratios py:qy: —1 of the normal there satisfy F(xy, ¥, %g, Do 40) = 0
Hence the normals to all possible integral surfaces through the point
generate a cone N whose equation is

r—x, Y—Y
F(xo, Yo» o> _u—u(:,’ _u——u(:,) = 0.

The tangent planes at (z,,y,, %,) to all possible integral surfaces
through this point envelope another cone 7' whose equation is ob-
tained by eliminating p, and ¢, from the equations

U —uy = Po(® — %) + 4o(¥ — Yo)>
(@ =) Qo— (¥ —Yo) Ko = 0,
F (@, Yo, %0, Po> q0) = 0,
where P, and @, denote the values of F/dp and oF [oq at
(%) Yo, Uo» Po» Jo)-
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8] EQUATIONS OF THE FIRST ORDER [1.3

The tangent plane to a particular integral surface at (x,, ¥y, %,) goes
through a generator of the cone 7'; the normal there lies on the cone N.

In the case of Lagrange’s equation, the cone N degenerates into
the plane
P Fo(x—20) + Qo(y — ¥o) + Bo(u —up) = 0;
the cone 7' becomes the straight line

T—% _Y—Yo_U—Y%
£ o R, -

1.4 An example of the Lagrange—Charpit method
We find by the method of characteristics the integral surface of
pg = xy which goes through the curve % = x,y = 0. The character-
istic strips are given by the differential equations
t=¢q, y=p, d=2pq P=y, =2
and the relation pq = xy. It turns out that
x = Aet+Bet, y=Cet+Det, u=ACe?—BDe %+,
p="Ce—Det, ¢q=Aet—Bet,
where the constants of integration are connected by
AD+BC = 0.

On the initial curve x=s, y=0, uw=s.

On the initial integral strip, the equations
du = pdx+qdy, pg=2xy

give p = 1,9 = 0. Let ¢ be measured from the initial curve. Then
when ¢ = 0, we have

A+B=s, C+D=0, AC—BD+E =s,
C—-D=1, A-B=0
where AD+BC = 0.
These give A=B=4%s, C=~-D=1}%, E=1s,

the condition 4D+ BC = 0 being satisfied automatically since the
initial strip is an integral strip.
The characteristics through the initial integral strip are therefore

z = scosht, y=sinh¢, u = scosh?{,

p = cosht, ¢ = ssinht.
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1.4] EQUATIONS OF THE FIRST ORDER 9
Eliminating s and ¢ from the first three equations, we obtain

W = 221+
as the equation of the required integral surface.

1.5 An initial value problemt
In this section we prove that the equation

?=fy,uq) (1)
has, under certain conditions, a unique analytic solution which
satisfies the initial conditions

u(xo’ y) = 975(.1/), Q(xo’ y) = ¢I(y): (2)

where ¢(y) is analytic. The result we obtain is a local result; we show,
by the method of dominant functions, that there is a solution
u = u(x,y)

regular in a neighbourhood of any point (z,,y,) of the initial line
@ = x,. It is convenient to write u, for ¢(y,), ¢, for ¢'(y,). And we
make the assumption that f(z,y,u,q) is an analytic function of four
independent variables, regular in a neighbourhood of (zy, ¥y, %, ¢o)-

The problem can be transformed into one involving three quasi-
linear equations with three dependent variables u, p,q. If there is an
analytic solution, then d¢/ox = dp/oy. From equation (1) we have

9p _ oq
E’L‘ _fx+fup +fq%-

Hence u, p, ¢ satisfy the equations

du \

ax _p’

op _ op

55 “f:c+fup+.fqay7 (3)
9q _%

ox oy

under the initial conditions

o y) = 0y), P(@0y) = (@04, 3(y), $'®),  a@o,y) = ¢'(y).
This system of three equations is equivalent to equation (1) under
the initial conditions (2). From the first and last of equations (3),

0 ou
55( ‘a—y) =0

1 See Notes 1 and 2 in the Appendix.
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10] EQUATIONS OF THE FIRST ORDER [1.5
ou
so that —— = w(¥y)-

By the initial conditions, w,(y) is identically zero, so that ¢ = du/dy.
The second equation of (3) gives

op _ og _of
% _fx+fup+fqa—x = 3_%

since by Ou _ Tu _op
dr dxdy oyox By’

when « is analytic. Hence
p= f(x’ Yy, u, q)+ w2(y)'

Again, by the initial conditions, w,(y) is identically zero, and so
p =f(@,y,u,9).

The coefficients in the second equation of (3) involve the indepen-
dent variables x and y. We can get rid of this restriction by introducing
two additional dependent variables £ and 7 defined by
% _om o a_,

ox oy’ ox
under the initial conditions
£=0, 1=y—"Yo

when x = x,. Since 7 is independent of x, 7 = y—y, for all z. Then
0ffox =1 so that {=x—x,. If we put 2 =x+§ y=y,+7 in
f(x,y,u, p,q) we get an analytic function g(£, 9, u, p, ¢) of five variables
regular in a neighbourhood of (0, 0, %y, py, ¢,)- We now have a system
of five equations

o _ o

o Poy’

op _ o, P
o = Ut 0uPl g T 0a g
9 _ o

ox oy’

% _o

ox oy

o

="
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