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PREFACE

This book has grown out of lectures and seminars held at the Uni-
versity of Sheffield in recent years. Its purpose is to give a virtually
self-contained introduction to certain parts of Modern Algebra and
to provide a bridge between undergraduate and postgraduate study.

The title, Lessons on rings, modules and multiplicities, was
chosen partly because a certain emphasis has been placed on in-
struction. I have long been interested in problems involving the intro-
duction of young mathematicians to relatively advanced topics and,
in this book, I have endeavoured to present the chosen material in
a manner which will not only make it interesting but also easy to
assimilate.

One fact of general interest has emerged which I did not foresee
when I started. It was my intention to write about Commutative
Algebra, but the contents of the first chapter are of such generality
that it seemed wrong to exclude non-commutative rings at that
particular stage. From then on the question continually arose as to
the proper place at which to assume commutativity, and, indeed,
the precise form the assumption should take. The outcome has been

_ that this book, particularly in its later stages, is often concerned with
Quasi-commutative Algebra. By this I mean that non-commutative
rings are allowed but the emphasis is on the behaviour of central
elements. In fact much that one normally regards as belonging to
Commutative Algebra can be accommodated comfortably within
this framework. For example, this is true of considerable areas of
Multiplicity Theory and the theory of Hilbert Functions. It is also
true of the theory of I-adic Completions and, to some extent, the
theory of Primary Decompositions, though the latter fact gets only a
passing mention in the exercises. Other instances where this observa-
tion is valid will doubtless occur to the reader as he proceeds.

It is with pleasure that I take this opportunity to acknowledge
many sources of help and information. Since the subject matter of
the book is strongly slanted in the direction of Commutative Algebra
it was inevitable that the writings of N. Bourbaki, M. Nagata, P.
Samuel and O. Zariski should have a persistent influence. Those who
are familiar with the literature will also recognize that the chapter
dealing with the Koszul Complex owes much to the classic paper on
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xii PREFACE

Codimension and Multiplicity by M. Auslander and D. A. Buchs-
baum. In a similar manner, the chapter describing the properties of
Hilbert Rings is based on papers by O. Goldman and W. Krull.

This book has also profited from the research investigations of
recent postgraduate students at Sheffield University. In particular,
some ideas involving Multiplicity Theory and Hilbert Functions,
made use of here, first appeared in the doctoral theses of K. Black-
burn, D. J. Wright and W. R. Johnstone though they are now more
widely available in standard mathematical journals.

An author is very fortunate if he has someone who is willing to
read his manuscript with care and make detailed comments. D. W.
Sharpe has performed this labour for me with a thoroughness which
is familiar to those who know him well. His observations and con-
structive criticisms ranged from matters of punctuation and assis-
tance with proof-correcting to comments on the organization of whole
chapters. A number of sections have been rewritten to incorporate
improvements which he has suggested. In the later stages, P. Vimos
also helped me in a similar way and the final version has gained by
being modified to take account of his observations.

Finally my thanks go to my secretary, Mrs E. Benson, who typed
the manuscript and remained cheerful when I changed my mind
and asked to have considerable proportions done again. Without
her help this book would have taken very much longer to complete.

D.G. NORTHCOTT
Sheffield
March 1968
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SOME NOTES FOR THE READER

There are certain matters which will be quite clear if the text is read
consecutively from the beginning, but which require comment if
you are primarily interested in particular sections and wish to
study them in isolation. For example, it is necessary to know that the
term ring is always understood to include the existence of an identity
element, and the definition of a ring-homomorphism requires that
identity element be mapped into identity element. A further point
is that a homomorphism R — R’, where R and R’ are rings, is called
an epimorphism only in the case where the mapping is surjective,
that is to say when each element of R’ is the image of at least one
element of R.

Next there are some extensive sections in which only commutative
rings are considered and in these the adjective commutative is usually
suppressed in order to avoid tedious repetition. To discover whether
the results of a particular section are established only in the case of
commutative rings, it is sufficient to refer to the general remarks at
the beginning of the chapterin which the results occur. These remarks
contain, among other information, identification of all sections which
are subject to this restriction.t

It will be found that the main text provides rather full explanations
and for this reason, does not provide opportunities for you to devise
your own arguments. To remedy this situation some exercises have
been included at the end of each chapter. These are designed to let
you test your grasp of basic concepts as well as to add to the in-
formation provided by the rest of the book. Certain of the more useful
results contained among the exercises are employed at a later stage;
but wherever this is the case the result in question is always estab-
lished in the course of the discussion.

Cross-references are made in the following manner. If there is a
reference to (say) Theorem 5 and no chapter or section is specified,
then the result quoted is to be found in the chapter where the refer-
ence occurs. Where in one chapter it is necessary to recall a result
established in some other chapter, the appropriate section is always
given. To illustrate this, suppose that you have been referred to
Proposition 18, Cor. 1 of section (3.9). Then the result in question is

t Similar use is made of the remarks which precede each set of exercises.
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xiv SOME NOTES FOR THE READER

the first corollary of the eighteenth propositionin Chapter 3. To
narrow the search, the extra information provided says that it
occurs in the ninth main subdivision of that chapter.

The final point concerns notation used in connection with sets.
If X and Y are sets and X is contained in ¥, then the symbol X < ¥
is used to indicate this fact. The advantage gained is that when X
is strictly contained in Y, that is to say when X < ¥ and X + Y,
it is possible to indicate this by writing X < Y. Although this
conflicts with common practice, it will be found convenient and not a
source of confusion.
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