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Prerequisites

This chapter begins with a rapid review of elementary arithmetic and
algebra, emphasizing only those techniques essential to an understanding of
the calculus. No attempt is made to provide a complete logical development
of the subject.

0.1 Fundamental operations; parentheses

We begin with a brief statement of familiar properties of the numbers of
arithmetic.

It makes no difference in what order we add numbers: 3+4=7 and
4+3 =17, and, in general, for a and b any numbers,

a+b=b+a. (1)
Likewise, the way in which numbers are grouped for addition does not
affect the result: 3+(4+5)=3+9=12, and 3+4)+5=7+5=12. In gen-
eral,
a+(b+c)=(a+b)+c. (2)
Multiplication of natural (i.e., counting) numbers may be thought of as
repeated addition. Instead of 4+4+4, we write 3-4, and for 3+ 3+3+43,
we write 4-3. But both are equal to 12, and, in general,
a-b=b-a. (3)
As with addition, the way in which numbers are grouped for multiplica-
tion does not matter: 3-(4-5)=3-20=60, and (3-4)-5=12-5=60. In
general,
a-(b-c)=(a-b)-c. 4)
Adding two numbers and multiplying the result by a third number gives
the same result as multiplying each of the first two by the third and then
adding. For example, 3-(4+5)=3-9=27, and 3-4+3-5=12+15=27.In
general,
a-(b+c)=(a-b)+(a-c). (5) 1
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0 Experience with sets of objects makes properties (1) through (5) intui-
Prerequisites tively clear for the natural numbers. As the number system is extended to
include fractions, negative numbers, and so forth, definitions are so chosen
that these properties hold for them also. Remember that the letters in
algebra stand for numbers; hence, these properties are basic to all the
manipulations of algebra.
Parentheses, and other grouping symbols such as brackets, [ ], and
braces, { }, are essentially punctuation marks. Indicated operations inside
parentheses are to be thought of as performed first. In equations (2) and (4)
they are used to indicate special ways of looking at the expression. If we
care only about the result, not how it is obtained, equation (2) says that we
can omit the parentheses and write a + b + ¢ without ambiguity. Similarly,
in (4), a-b-c represents the same number whichever way of associating
factors is chosen. In (5), the situation is different. Writing a-b + ¢ gives no
indication, without some further agreement, whether this means a-(b + ¢)
or (a-b)+c. But these are different: 3-(4+5)=3-9=27, and (3-4)+5
=12+ 5=17. The universal convention is to choose the second. That is:

Unless there is notation to the contrary, multiplications (and
divisions) are performed before additions (and subtractions).

The convention permits removal of parentheses on the right side of (5):
a(b+c)y=a-b+a-c

So far we have used the dot to indicate multiplication. When there is no
ambiguity, we can omit the dot. Obviously, 24 and 2-4 have different
meanings, but 2-x can be written as 2x and a- b as ab. Equation (4) can be
written

(ab)c=a(bc), (4)
and (5) as
a(b+c)=ab +ac. (59
Property (5) can be used to “expand” (a + b)( p + gq) as follows:

(a+b)(p+q)=alp+q)+b(p+q)=ap+ag+bp+bg. (6)
If the two factors are alike, we use the shorter notation (a + b)? for

(a+b)a+b), and likewise (a+ b)? for (a+ b)a+ b)a+b), and so
forth. Then, as a special case of (6), we have

(a+b) =a*+2ab+ b

The difference a — b is defined as the number d such that a = b + d, and

the quotient a + b, also written a/b, as the number g such that a = bgq.

Properties such as the following can be understood intuitively for the

2 natural numbers by dealing with sets of objects and can be proved formally
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on the basis of these definitions and properties (1)—(5): 0.2
a—(b+c)=a-b—c, Zero and negatives
a—(b—c)=a-b+ec,

a(b—c)=ab—ac,
a+(bc)=(a+b)+c.
Calculators are designed to make it easy and natural to follow conven-
tional arithmetic and algebraic usage. However, there are variations in the
way different calculators work, and the beginner on any calculator must

study its characteristics carefully. With practice, one soon learns to observe
the standard conventions just as instinctively as in hand calculation.

PROBLEMS

1. Evaluate each of the following expressions:

(@ 5+3-5 (b) 2~i—E (© iiz (d) 3-96+3-4 (e) 10—-2-5

3
6 (10-2)-5 (g) (6+2)=3 (h) 6+(2+3) (i) 12—-(4+2)
G O+H—(T-3) (k) 2-[7+3-2-49] () @4+6-4)=7
2. Simplify each of the following expressions:
(@ (a+pXp+q—p*—pg (b) (c+2d)*—4cd
(©) (a+b)>—2(a? + ab) @ x2—xy+yr—x(x—y)
o 3. Expand each of the following expressions, and keep your results for
future reference:
@ (x+h)® O (x+h)*  (©(x+h)
4. Evaluate the expressions in each of the following pairs.
(a) 5-10—8, 5(10—-38)
(b)17-6+5, 17—-(6+5)
(c) 8+4+2, @B+4)+2
(d) 2+3?, 2+3)?
(e) x-x+y, x(x+y)
) sr—rr+s, s[r—r(r+s)]

0.2 Zero and negatives

The number 0 is defined by the property a +0 = a for all numbers a. We
have, from this definition and (5),

a-0=0 foralla. (7)
An important consequence follows:
Ifab=0, thena=0 or b=0. (8)
Division by 0 is impossible. For suppose that 2+0=g. Then, by the
definition of division, ¢-0 = 2. But, by (7), there is no such number g. The 3
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0
Prerequisites

same argument applies for a +0, a being any number other than 0. Now
suppose 0+0=gq. Again, by the definition of division, 0-g=0. Here ¢
could be anything: 3, 0, 1, 100, and 9999 all satisfy this condition; there is
no way of picking out one number as the “answer.”

Dividing 0 by any number different from 0 gives no trouble: Suppose that
0+ a=gq, with a # 0. Then aq =0 and ¢ = 0, by (8).

The negative of a number a is the number x such that a + x = 0, and it is
denoted by —a. The negatives of the positive numbers are the negative
numbers, and the negatives of the negative numbers are the positive
numbers. Positive numbers are greater than 0, negative numbers less than 0.
Note that 0 is neither positive nor negative and that the negative of 0 is 0.
The natural numbers, their negatives, and 0 compose the set of integers. The
following familiar results follow from this definition and the properties
(1)-(5) in Section 0.1.

For all p, q, p +(—¢) = p — q. (Note that the minus sign plays two roles —
as a label for the negative of a number and as the symbol for subtraction.
This equation means that p — g can be thought of either as indicating the
subtraction of ¢ from p or as indicating the addition of p and - q.)
Similarly, for all p, q, r,

p—(—q9)=p+tgq,
~(=p)=p,
—p=(-Dp,
(=p)q=~(pq),

(=pX(—q)=pq,
P _—P__|P
-9 9 (q)’
“p_p
-9 q’

r(p—q)=rp—rq.

PROBLEMS

1. Evaluate, if possible, for x =0, x =1, and x = 3:

2 _ 2 2 _
@ i3 oI ©0iZ) @5

x+3 ) o x?P—4x+3
2. Evaluate each of the following expressions:
(@ 5+(—8) (b) 5—(-8) (c) 4-106—4-6
10 -10 -10
12-10 12+(-10 . 12—(-10
® ~— m 210 22(10)
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. 16—10 -16—-10 1-3-5

0 5 O 79 Os5=y
56—8(7+5)

™ =6

3. Simplify each of the following expressions:
@ (a+b)p+q)—(a+b)p (b) x(u+v)—2xu
© (x=p)+2xy (D (c—d)—(a—d)=(c—a)

(¢) ab—[cd —(ef —ab)] (D) ;—%

© 4. Simplify each of the following expressions:
@ (x = y)x+y) (b) (x—y)x*+xy+y?)
© (x = y)x*+x%y + 9 + »?)
5. Expand each of the following expressions:
@ (x=h)? (b) (x=h) (©(x—h)?* @ (x—h)

0.3 Fractions and rational numbers

A rational number is one that can be expressed as the quotient of two
integers; that is, as a fraction with numerator and denominator integers.
Every integer satisfies this definition because it can be expressed (in many
ways) as such a quotient; for example, 3=3+1=6+2=15+5, and so on.
The way we read a common fraction like two-thirds indicates that we are
thinking of it as 2-(3). But 3(2)(3) = 2(3)(3) = 2-1=2; hence, it satisfies the
definition of the quotient 2 + 3. We can choose whichever interpretation of 3
suits us.
Common sense assures us that 2-(3) =4-(¢) - twice as many parts, each
half as big. That is, # = %3 = ¢. In general, for k # 0,
a ka
=% &)
(In this and the formulas that follow, assume that the denominators of the
given fractions are not 0.) We can use this property to reduce a fraction to
“lower terms” — 19=23=2 _ or to change to “higher terms” - %=
24 =12 =012
If a decimal terminates, it can be written as a fraction whose denominator
is a power of 10 (e.g., 0.12 = 1), and hence it is rational. The converse is
not true; for example, 3 = 0.333..., continued indefinitely.
Multiplying simple fractions like 3-3=%, and 3-3=(5-3)7-3)=
(5-N(E-3) =2, leads to the general rule
a ¢ _ac
b'd bd
The rule for dividing fractions can be obtained by applying (9) to
a/b _(a/b)-(d/c) ad/bc _ad

c/d " (c/d)-(dfe) 1 be’

(10)

0.3
Fractions and
rational numbers
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0 In other words:

rerequisi . . . . .
Prerequisites To divide by a fraction, invert the divisor and multiply.

To see how to add fractions, we look again at cases in which it is easy to
see what the answer must be: §+3=3=1; {+1=(4+3)-1=1. Clearly, if
the fractions have the same denominator, the numerator of the sum is the
sum of the numerators, and the denominator is that common denominator.
But by the use of (9) we can always express each of the fractions so that
they do have a common denominator: For example, 1 +$=13 +41=
2+ 2 =1 1In general,

+tS =t == . (11)

c
. b-d bd

Whereas (11) always gives the correct result, that result can sometimes be
obtained more easily: For example, £ + 3 =13+ & =13, whereas (11) would
have us say 33 + 4% = 28, which reduces to 13, the same result, of course. The
work will be simplest if we use as the denominator the least number that
contains both denominators as factors; to see what this is in a less obvious

case, we write the denominators in factored form.

a-d b ad + bc
d

o R
ale
o

Example 1
1,5 1 s
60 72 92.3.5 93.32°
The least common denominator is 2°-3%-5. We have then

723, 55 _ 4 25 _ 61
22.3.5.2.3  23.32.5 360 360 360°

which is in lowest terms. Rule (11) would give & + 5 = 2%, which reduces
to £%.

Obviously the arithmetic needed involves larger numbers than the first
method. We could replace (11) by the following rule, but it is awkward to
write it as a formula:

To add fractions (with minimum labor), change each
fraction to one whose denominator is the least common
denominator for all the fractions; then add the numerators
and set that result over the common denominator.

(11)

Example 2
1 1__ 13  1-(3+h) _3-(3+h)
3+h 3 (3+h)3 33+h) 3(3+h)
3-3—-h —h
6 “3B+h) 303+h)
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Example 3

LS
2x(x+h) 2x%

The least common denominator is 2x2(x + h).

1 1 1-x 1 (x+h)  x—x—h

2x(x+h)  2x2 2x(x+h)yx  2x¥(x+h) 2x3(x+h)

- —h
2x2(x+h)

In the preceding examples there is no point in multiplying out in the
denominators (except possibly in the last step for some purposes, especially
in numerical examples); on the other hand, it is necessary to multiply out in
the numerators in order to combine like terms.

In the rational numbers we have a set closed under the operations of
addition, subtraction, multiplication, and division (i.e., combining any two
numbers of the set by any of these operations gives again a member of the
set), with the single exception of division by 0. Although we have by no
means done so, it can be shown that properties (1) through (5) hold for the
rational numbers.

PROBLEMS

1. Reduce each of the following fractions to a simpler form, if possible:
WE % 0m-EEl 08 ©ig
2
® % ® 6(63-6+hh) " 10x?f¢ 2 O +33y) o
) 2 ( y +3)
2. Perform the indicated additions and subtractions:

5 2 11 2 Sb 5
@cts ) 3537 (c)a2+ab+a+
y__ x, 7 b
(d)x+y x+z ©) 5 +2x (f)a+c

© 3. Simplify each of the following expressions:

MR

(x+h)} x
© [—=-%|/n

(x+h) x

b

0.3
Fractions and
rational numbers
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0 0.4 Integral exponents
Prerequisites

We have assumed familiarity with the definition
x"=x-x-...-x (mfactors), m a positive integer.

This definition leads immediately to the following results, where m and n are
positive integers:

(xp)" =x"y" (12)
XMyt = xmtn (13)
(xm)" = 19

pri x™ ", ifm>n (read m greater thann), andx+0. (15)
We define x™ for zero and negative m in such a way that (12)-(15) hold. If
we ignore the restriction m >n in (15), we have, for example, x*/x7 =
x*7=x73, x#0. On the other hand, x*/x’=1/x""%=1/x3, x#0. In
general, we define

1

m?

X

x M= x#0, mapositive integer. (16)

Similarly, if m=n, x™/x™=x"""=x% x # 0. But x"/x™ =1, x # 0, and
0™/0™ =0/0 is a meaningless symbol. Hence, we define

x%=1, x+#0. (17)
Note that 0° is undefined.

PROBLEMS
Simplify the following expressions, writing each of them without negative
exponents.
-1 —1\2 x2 _1
l.x+x 2. (x+x7Y) 3.
2x71
-2
4. (7x)° + lo 5. 3’2‘ _ 1 6. —
X (2x)*-1 2x-1 27x -1
x+y a?-b2 1, 1o
7. ————— 8., —— 9. (x " +
R P ( y )
1 0 a—2
10. (1+—) 11. 12. k(r+ k)2 — k=2
x 272
3, ,.2)\4
13, {aha) 14. (rs)>3r= s~ 15. (w2 + w32
(ab)
8 16. (w2 +w3)"2
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0.5 Radicals, fractional exponents, and real numbers 0.5

Radicals, fractional
Recall now the familiar notation using radicals to denote roots of numbers. exponents, real numbers
By definition,

q, q . .. .
(\/; ) =X, where q 18 a positive Iinteger.

For example, (V5)? =5, (Y9)?=9. Now, both 3>=9 and (—3)2=9. It is
agreed that V9 =3, the positive root only; then —3 = —v9. (There is a
discrepancy here, which may be confusing, between the way we read vx and
the precise definition of the symbol; strictly speaking, we should say “the
positive square root of x” instead of simply “the square root of x,” as we
usually do.) Likewise, V5 stands for the positive root only. For ¢ any even
number and x > 0, we have a similar situation; for example, ‘\1/1_ =2, not
—2. For g even and x < 0, there is no real root; nevertheless, we shall later
find meanings for such expressions. For g odd, there is exactly one real root,
and so we need no such convention; for example, \3/§ =2, 3/—— =—-2.
It is easily shown that

Vab =Va Vb and 1/%:%. (18)

This gives a means of simplifying radical expressions, or changing them to
more convenient forms (e.g., without radicals in denominators). Examples:

V54 =27 V1 =3V2.

V5a2 +10ab +5b% =5(a* +2ab + b*)
=V5-Y(a+b) =V5(a+b), ifa+b>0.
4 4 4
V16a* +16b* =Y16 -Va* + b* = 2/a* + b° .
\/x+y =‘/x+y -‘/x—y =VX2_}’2
\/x—y \/x—y \/x—y xX—Jy

We return now to exponents. If we apply (14), disregarding the restriction
that m be an integer, we have (x'/9)7 = x9/9 = x, and so we define

, ifx—y>0.

x4=Yx, gqa positive integer. (19)

This means that everything we have said about radical expressions can be
stated in terms of fractional exponents. For example, (18) becomes

1/q 1/q
(ab)/?=d/"/9 and (fl-) =4
b p/a 9
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0 Now, using (14) and neglecting the restriction that m be an integer, we have
Prerequisites xP/7=(x'/2)?, p and q integers, ¢ > 0. For example, 8%/% = (8/%)2 =22 = 4.
If x > 0, then also x?/7= (x?)/4; if x <0 and if p /q is not in lowest terms,
this may lead to error. For example, (—8)%¢=(—8)"/*= -2 but

[(—8)2]7% = (64)!/°=2, not —2. We therefore take as the definition of
xp/q,

x?/?=(x'/7)?, pand q integers without a common factor, ¢ > 0. (20)

With definitions (16), (17), (19), and (20) it can be shown that properties
(12) through (15) hold for m and n any rational numbers. The only
restrictions that are retained are that x # 0 in (15) and that 0° remains
undefined. 3

In the preceding discussion we mentioned some symbols (e.g., V3,V5,V2)
that have no meaning in the rational number system. That is, it can be
proved that there is no rational number whose square is 3, and so forth. The
set of real numbers can be defined as the set of all decimal representations,
terminating and nonterminating. The rationals compose the subset with
decimal representation, either terminating or periodic from some point on.
(This is not hard to show.) All other real numbers are irrational. For
example, the following numbers are all rational:

3+ =12.75,
3=1.66... (the dots mean “continued indefinitely”),

% =0.04545... (the dots above 45 indicate the period),

3

b

3.1416.

It can be shown that V2, \3@, and the number 7 are irrational.

The real numbers can be put into one-to-one correspondence with the
points of a line, once a zero point, a unit point, and a positive direction have
been chosen, so that numbers on the number line increase in the positive
direction and decrease in the opposite (negative) direction.

Even in the set of real numbers, we have no number whose square is a
negative number. Later we shall make one more extension of our number
system which will remedy that lack.

PROBLEMS
1. Simplify:
4 ’f4 3 2 3
(a) V48 (b) 5 (©Va’-2a’b+ab

3 5
(d) V8a®—8h> (¢) ———
1 O \/5((1+b)3
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