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1

GOVERNING EQUATIONS OF
COMBUSTION

1 Approach

The development of the equations governing combustion involves
derivation of the equations of motion of a chemically reacting gaseous
mixture and judicious simplification to render them tractable while retain-
ing their essential characteristics. A rigorous derivation requires a long
apprenticeship in either kinetic theory or continuum mechanics. (Indeed,
the general continuum theory of reacting mixtures is only now being per-
fected.) We choose instead a plausible, but potentially rigorous, derivation
based on the continuum theory of a mixture of fluids, guided by experience
with a single fluid. Ad hoc arguments, in particular the inconsistent
assumption that the mixture itself is a fluid for the purpose of introducing
certain constitutive relations, will not be used.

Treating the flow of a reacting mixture as an essentially isobaric process,
the so-called combustion approximation, is a safe simplification under a
wide range of circumstances if detonations are excluded. But the remaining
simplifications, designed as they are solely to make the equations tractable,
should be accepted tentatively. They are always revocable should faulty
predictions result; for that reason they are explained carefully. Neverthe-
less, whosoever is primarily interested in solving nontrivial combustion
problems, as we are, can have the same confidence in the final equations as
is normally placed in the equations of a non-Newtonian fluid, for example.

These final equations retain most of the complexity of a compressible,
heat-conducting, viscous fluid; but diffusion of the species, and source
terms representing the chemical reaction, have been added. This complex-
ity has usually been fought with irrational approximation and computers.
Combustion processes, however, tend by their very nature to have
large activation energies. It is, therefore, more appropriate to analyze the
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2 I Governing equations of combustion

problem rationally by localizing the reaction in layers (or flames), which
can be done through activation-energy asymptotics, as is shown in section
8. Such an approach was scarcely mentioned before publication of the
review article of Williams (1971), which contains the first suggestion of so
forming a mathematical theory of combustion. The classic paper of Bush &
Fendell (1970) did come earlier and Frank-Kamenetskii (1969, p. 375) did
introduce approximations based on large activation energy more than
forty years ago, but Williams marked the start of a clear path through the
complex and fascinating problems of combustion, as is shown by the
wealth of papers that have appeared since.

Our immediate intention is to reach a convincing set of equations and a
method of attack, so as to come to grips with the subject of laminar flames.

2 Continuum theory of a mixture of reacting species
The mixture has density p and is considered to be made up of N
fluids whose separate densities are pY;(i=1,2,..., N). Here the Y; are
mass fractions (or concentrations), with

N
Y Y=L (1)
i=1
If v, is the velocity of the ith fluid, i.e. species, the balance of mass requires
d(pY)/ot+ V- (pYw))=p;, (2)

where p; is the rate of production of species i (mass per unit volume) by
the chemical reactions so that

N
2 =0, &)

Summation of the equations over all species yields the familiar con-
tinuity equation
dp/ot+ V-(pv)=0, (4)

where

You; (%)

VN

V=

i=1
is the mass-average velocity of the mixture. Each balance equation (2) can
now be recast by subtracting Y; times the overall equation (4) and intro-

ducing the diffusion velocities

Vi=v;—v; (6)
this gives
p@Y;/0t+v- VY))=p;— V-(pY; V). (M

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521091923
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-09192-3 - Theory of Laminar Flames
J. D. Buckmaster and G. S. S. Ludford

Excerpt

More information

2 Continuum theory of a reacting mixture 3

The momentum balances of the separate fluids will not be given since
they play no role in the sequel. But Truesdell (1965) shows that if they are
added the result is the single-fluid balance

p(Ov/0t +v-Vr)=V-X + pyg, (8)

provided no momentum is created by the chemical reactions. Here X is
the sum of the stresses in the individual fluids plus stresses due to diffusion
of the species and g is the gravity force, assumed to be the only force
external to the mixture. Interactions between the species (see also the dis-
cussion of Fick’s law (19)), which give additional external forces on each
individual fluid, sum to zero.

We shall also forego writing the energy balances for the separate fluids,
but Truesdell shows their sum gives the single-fluid balance

p(OU/0t+v-VU)=Z:Vv + V-4q. 9)

provided no energy is created by the chemical reactions and the work of
the interaction forces is negligible. (For the forces mentioned at the end
of this section the work is nonlinear in the (small) V.) Here U is the sum of
the separate internal energies plus kinetic energies of diffusion, while ¢ is
the sum of the separate energy fluxes plus fluxes due to diffusion. Note that
the work of the gravity force has not been neglected: it is Z?': L (pY)g. V=0
by virtue of the result

N
Y Y ¥i=0, (10)
i=1

which follows from the definition (6).

The new variables p;, ¥;, Z, U, and q introduced by these balances have
to be related to the primitive variables by constitutive equations. Con-
tinuum mechanics does not supply such relations, but rather judges them
for consistency with certain general principles after they have been pro-
posed. For reacting mixtures such judgements are still being made, but
the linear equations we propose are acceptable (Bowen 1976). With the
exception of those for p; and V; they result from experience with a single
fluid. The coefficients (50) that will appear are, for the moment, to be
considered functions of the primitive variables.

The primitive variables will be Y, », p, and p; but in formulating the
constitutive equations it is convenient to introduce the temperature T,
which is assumed to be the same for all fluids. If each species is a perfect
gas its partial pressure is

pi=R(pY)T/m, (11)
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4 I Governing equations of combustion

and the consequence of Dalton’s law is
N
p=RpT Y, (Yi/my), (12)
i=1

which determines the common temperature. Here R is the gas constant
and m; is the mass of a molecule of species i. The separate internal energies
of the fluids are then functions of T alone, which may be written

Ui=hi—pi/(pY), (13)
where the enthalpies are

T
T LO ¢ {(T)dT. (14)

Here h? is the heat of formation of the species i at some standard temper-
ature T and the c,; are the specific heats at constant pressure. If we
neglect the kinetic energies of diffusion because they are nonlinear in the
V,, the internal energy of the mixture is now

N
U= 3 Yh~plp. (15)

Next the energy flux g is specified by requiring that the energy flux in
each individual fluid is due entirely to heat conduction, so that

N
g=AVT—p Y YV, (16)
i=1

where A, the coefficient of thermal conductivity of the mixture, is the sum
of the species coefficients. Each of the diffusion fluxes is that of a single
fluid moving relative to the mixture with velocity V; when kinetic energy
and deviation of the stress tensor (17) from —p;1 are neglected, the latter
anticipating the combustion approximation (section 5) that makes v;
small. Such a ¢ neglects, in particular, radiative transfer and the Dufour
effect (heat flux due to concentration gradients).
The separate stresses are assumed to be Newtonian, i.e.

Ti= —(pi+ 2k V-0l 456, [ Vo + (Vo)) 7], (17)
where 1 is the unit tensor and bulk viscosity has been neglected (for sim-
plicity only). We shall take the remaining coefficients x;= Yi; this corre-
sponds to assuming that the intrinsic viscosities of the fluids are all equal.
(Otherwise gradients of ¥; must be neglected in comparison with those of v
to arrive at the result (18).) Since stresses due to diffusion and terms V;VY,
are nonlinear, the separate stresses sum to give

Z=—(p+2kV- o)l + k[ Vo+(Vv)7] (18)
by virtue of the result (10).
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3 The Arrhenius factor 5

The thermomechanical constitution is completed by equations for the
diffusion velocities V;; we adopt Onsager’s (1945) generalization of Fick’s
(1855) law

N
pY Vi=— Z wi; VY, (19)
j=1

making each diffusive mass flux a linear combination of the concentration
gradients The result (10) now reads

N
Z Z 1 VY= Z [; (#ij“ﬂiN):I VY;=0

i=1 j=1
when the relation (1) is used to eliminate VYy. Since the remaining
gradients are independent of each other, it follows that the coefficients u;;
must satisfy

Z pij= Z winy for j=1,2,...,N—1. 20

An equivalent of the law (19), in which the gradients are expressed as
linear combinations of the diffusion velocities, can be derived from the
separate momentum balances by making assumptions about the inter-
action forces between the species (Williams 1965, p. 416). An implicit new
assumption in such arguments is that the accelerations dV;/dr are negli-
gible. They only occur in unsteady problems and then produce a finite
velocity of propagation of diffusion effects (Miiller 1977): such an effect
appears to be of no great importance in combustion. The generalized
Fick’s law (which neglects the Soret effect of a diffusive flux due to temper-
ature gradients) is the only nonchemical constitutive equation not derived
from experience with a single fluid.

Finally we come to the g;, which require a discussion of chemical
reactions.

3 The Arrhenius factor
For simplicity we shall first consider one-step combustion, where
a single unopposed chemical reaction is involved. If N; is the number of
molecules of species i per unit volume, then by definition

pi=mN,. v}
The chemical reaction may be described in terms of the m; as the mass
balance

N

Z vim;= Z A, (22)

where v, and A; are called the stoichiometric coefficients, each a non-
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6 1 Governing equations of combustion

negative integer; v; is zero if the species i is not a reactant, while 4; is zero
if it is not a product. Both are zero for an inert. Since these coefficients
represent the relative numbers of molecules consumed or produced by
the reaction we may write

Ni=(/1i —Vvi)o, (23)
where w( > 0) measures the rate at which the reaction is proceeding. Clearly
the requirement (3) is now a consequence of the definition (21) and the
mass balance (22).

For example, consider the exothermic reaction

2NO +Cl1,-2NOCI (24)

by which nitrosyl chloride is formed from nitric oxide and chlorine. If the
three species are numbered

1: NO; 2:Cl,; 3:NOCI;
then the stoichiometric integers are
vi=2,v,=1,v3=0; 1,=0,4,=0,43=2;
and
Ny=-=2w, N,=-w, N;=2w
are the rates of consumption (negative) and production (positive) of the
molecules. Note that the reaction (24) is written

NO+ NO+Cl,—»NOCI+NOCl (25)

when single molecules are used.

It is, therefore, o that must be related to the primitive variables; a com-
mon assumption is that it is proportional to the number density (con-
centration) p Y;/m; of each reactant, where the species j is counted v; times
as a reactant (see the single-molecule form (25) of the reaction). Thus,

N N N
o=k [] (pYy/m;)'=kp* ] (Yj/m)"i, wherev=7y v; (26)
j=1 i=1 j=1

J
and the factor k is assumed to depend only on the temperature. Since
experimental determinations of k are often done under isothermal con-
ditions, it is called the rate constant; but we shall avoid the term since the
temperature dependence of k is an essential feature in our analysis. The
Arrhenius (1889) law

k=BT*e ERT 27N

will be taken for its variation with temperature, where B, a (equals % theo-
retically), and E are constants. The latter is known as the activation energy
since E/R is roughly the temperature below which k is relatively small.
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4 Differential mass diffusion : equalities 7

Thus we now have

Pi= i, (28)
where

N
pi=midi—v;), w=BT% 5RTp" T (Y;/m;)*. (29)

j=1
More complex reactions are first split up into elementary reaction steps
that may contain reversals of each other (opposing reactions). For each
elementary reaction a formula (28) holds and for the complete reaction
p; is the sum of all such terms. (A pair of opposing reactions may be in
equilibrium, i.e. the corresponding terms cancel and thereby furnish an
algebraic relation between mass fractions.) The central question of reaction
kinetics is to determine these elementary steps and their parameters B, a,
and E. This monograph will be restricted to a single elementary reaction.
Equilibrium is then reached only when one of the reactants is exhausted, i..

Y;=0 for some i. (30)

In practice, a combustion reaction may be a complex network of ele-
mentary steps, so that attempts are made to model the overall reaction
with a smaller number of terms of the form (28), preferably one. The ex-
ponents v; are then released from being the stoichiometric coefficients of
the overall reaction and v is not necessarily their sum. On the other hand,
the y; retain their meaning since they still represent the proportions in
which the species take part in the reaction. The free constants B, «, E, v,
and v; are determined experimentally; of course, the v; need no longer be
integers.

4 Differential mass diffusion; equality of c,; and of m;

Once the various parameters (constants and functions) that appear
in the constitutive equations (12), (15), (16), (18), (19), and (28) are given,
there are N + 6 equations (1), (4), (7), (8), and (9) for the N +5 unknowns
Y., v, p, and p. Equation (1) is consistent with the remainder since they
conserve T, 1 Y: whenever the relations (20) hold between the p;;; initial
or boundary conditions will then give it the value 1. The system is very
complicated and must be simplified if it is to be analyzed in detail.

The law (19) leads to terms

N
_; V- (u;VY)) 31)

in the mass balances (7). To simplify these terms while retaining different
diffusion properties for the species, it is tempting to set
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8 1 Governing equations of combustion

pi=0 forisj (32)

and allow the y;; to change with i (Emmons 1971). The conditions (20),
however, would be violated: they require

Wii= pyy = p(say) for alli. (33)
Conclusions (32) and (33) are reached quite generally by Williams’s theory
when the so-called binary diffusion coefficients are equal, i.c. whenever the
interactions between pairs of species are identical for momentum.

The same goal, however, can effectively be reached by taking the values
(32) for all i except the last, and

pnj=txn—Hj; for j#N (34)
with the y;; different. The conditions (20) are now satisfied and the terms
(31) simplify to

V.(u;VY)) fori#N. (35)

Only the Nth equation remains complicated but, since Yy can be otherwise
calculated from 1 —E?’;ll Y,, that does not matter. Such a scheme can be
justified from Williams’s formulas when the first N —1 species are scarce
compared to the last, a condition often roughly approximated in combus-
tion where, for example, a stoichiometric air/propane mixture contains
76%, by volume of the inerts nitrogen and argon.

In short, we shall generally employ the values (32) and (33) but, when
differential diffusion cannot be ignored, the p; for i=1,2,...,N—1 will
be given different values. The results will then apply to a mixture of
reactants and products highly diluted in an inert. Note that a common
value of the y;; can still depend on the Y; and, hence, take different values
in different locations. This can give the appearance of differential diffusion
when, for example, there are two reactants (i=1, 2) that do not coexist.
Where Y, =0 its equation is irrelevant and p,, there may differ from py;
in the region where Y, =0 with irrelevant equation. Such is the case in the
burning of a fuel droplet treated by Kassoy & Williams (1968). They use
different diffusion coefficients for the fuel and oxidant equations but do not
apply the equations in the same place: the combustion field is divided
into two parts, in each of which there is either no fuel or no oxidant. There
is no question of an abundant inert.

We come now to the energy balance (9). First note that the individual
¢, disappear from U in favor of

N
Cp(T; Yl)= Z Yicpi~ (36)
i=1
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4 Differential mass diffusion; equalities 9

Thus, we have immediately

N
U=Y YHO+1-plp, (37)
i=1
where
N T T
T Y)= Z Y,-f c,,,-dT=f c,dT, (38)
i=1 o T

the last integral being taken with the ¥; fixed, i.e. for constant composition.
Adoption of p;;= ud;; ensures that the same happens to q: we have

N N N T
p Z Yh; Vi=p zYih? Vi+p Z (J CpidT> Y.V
i=1 i i T0

; (Lo c,,idT> VY,

h" u<VI—- Y Y,-c,,iVT>

i=1

Ii

©
}‘
o

||
"MZ uMz ﬂ[\/jz

h° Vi+ u(c,VT— VI). (39)

Next note the form that the energy balance now takes. The total con-
tribution to the equation from the heats of formation 49, when placed on
the right side, is

N N
= 3 K[p(@Y:/0r—v- YY)+ V- (oY, W)]= — . h¥p; (40)
i=1 i=1

according to the mass balances (7). Also, the total contribution from heat
conduction and terms containing c,, when placed on the left side, is

p01/ot+v- V1) + V-[u(c,YT— V1)~ AVT]. 41)
The remaining terms, when placed on the right side, contribute
ap/ot+v- Vp—2k(V-0)? + k[ Vo + (V)T ]: Vo 42)

according to the continuity equation (4). In the combustion approximation
discussed later the velocity is small, implying also that the pressure is
effectively a spatial constant, so that these last terms are ignored, except
for Op/dt, which is a function of ¢ alone.

It is tempting to take the Lewis number

£ =Aluc, 43)
equal to 1; then the terms (41) contain I only. If the c,;, however, are not

all equal, ¢, is a linear function (36) of the Y; that /A can only equal for
very special mixtures, if at all. Only when the ¢, are all equal does c, lose
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10 I Governing equations of combustion

its dependence on the composition of the mixture, and then it is unneces-
sary to make any assumption about the Lewis number, as we shall see next.

We are, therefore, faced with taking all the c,; equal, when ¢, becomes a
function of T alone:

c(T)=cp, foralli (44)

Since VI is then ¢, VT the energy equation reads

N
peI/ot+v- V)=V [(A/c, )VI]= — |: Y h?yi] w4+ Jp/ét, 45)
i=1

where
T
I(T)=J c,dT (46)
TO

is a function of T only and we have used the rate result (28). When con-
sidering specific enthalpy the species are distinguished only by their heats
of formation; thus, equation (45) is that of a single fluid in which differences
in these heats are liberated as reactants change into products. The species
equations (7) take a similar form

pOY,/0t+v- VY)— V-(uVY) = pc0. (47

Even differential diffusion leads to the energy equation (45) when the
specific heats are equal; the sum in which the ¢, first appear in the calcula-
tion (39) is again zero, now by virtue of the identity (10). When all but the
Nth species are scarce, the specific heats need not be equal to obtain an
equation of the form (45); then Y;, Y,,..., Yy_,, Vy are small and the
same sum is negligible compared to the heat-conduction term in the
resulting equation. A corresponding approximation of I then leads to
equation (45) with ¢, replaced by c,y. On the other hand, the species
equations (47) are changed by differential diffusion (the terms pu VY, being
replaced by Z}_; ;;VY)).

Another complication is the presence of the mass fractions in the equa-
tion of state (12). They effectively disappear if the first N —1 species are
scarce compared to the last; but the same simplification can only be
achieved, in general, when all the molecular masses are the same, i.e.
m;=m for all i. Then the law (12) becomes

p=RpT/m (48)
and the mixture behaves like a perfect gas. Such is the case when the
reaction changes a single molecule into a single molecule, but in practice
the condition is never met exactly.

We may certainly expect the assumptions of equal specific heats and
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